
MATH I OMICA PACKAGE TUTORIAL Related Tutorials ▼ Functions ▼ URL ▼

MathIOmica: Omics Analysis Tutorial
 Loading the MathIOmica Package Metabolomic Data

 Data in MathIOmica Combined Data Clustering

 Transcriptome Data Visualization

 Proteomic Data Annotation and Enrichment

MathIOmica is an omics analysis package designed to facilitate method development for the analysis of multiple omics in Mathematica, particularly

for dynamics (time series/longitudinal data). This extensive tutorial follows the analysis of multiple dynamic omics data (transcriptomics, proteomics,

and metabolomics from human samples). Various MathIOmica functions are introduced in the tutorial, including additional discussion of related

functionality. We should note that the approach methods are simply an illustration of MathIOmica functionality, and should not be considered as a

definitive approach. Additionally, certain details are included to illustrate common complications (e.g. renaming samples, combining datasets,

transforming accessions from one database to another, dealing with replicates and Missing data, etc.).

After a brief discussion of data in MathIOmica, each example data (transcriptome, proteome and metabolome) are imported and preprocessed. Next

a simulation is carried out to obtain datasets for each omics used to assess statistical significance cutoffs. The datasets are combined, and classified

for time series patterns, followed by clustering. The clusters are visualized, and biological annotation of Gene Ontology (GO) and pathway analysis

(KEGG: Kyoto Encyclopedia of Genes and Genomes) are finally considered.

N.B.1 For a more streamlined/simple example with less discussion please check out the tutorial on MathIOmica Dynamic Transcriptome.

N.B.2 We highly recommend the saving of intermediate results whenever possible. Some functions perform lengthy intensive computations and the

performance may vary from system to system. Please use Put to save expressions to a file, and equivalently Get to recover these expressions.

Loading the MathIOmica Package
The functions defined in the MathIOmica` context provide support for conducting analyses of omics data (See also the MathIOmica Overview).

This loads the package:

In[1]:= << MathIOmica`

Also we can load MathIOmica as:

In[1]:= Needs"MathIOmica`"

Data in MathIOmica
In this section we will discuss the data objects in use by MathIOmica, particularly the format of an OmicsObject. The data in the tutorial will be

imported as an OmicsObject which is first described in this section. Then we present the example data included with MathIOmica. The example data

will be imported in subsequent sections to illustrate analysis methods available in MathIOmica.

Printed from the Complete Wolfram Language Documentation 1

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Data Format: OmicsObject

In MathIOmica the calculations utilize what we term an omics object (OmicsObject). An OmicsObject is an association of associations with some

additional characteristics. It has an external (outer) association to denote samples and an internal (inner) association for annotation.

OmicsObject Structure

In an OmicsObject the outer association has M outer labels as keys, corresponding to M samples. Across the samples there are N inner labels (e.g.

identifiers for genes/proteins), and inner labels are the same across samples. For a given jth outer label, OuterLabelj, the kth inner label,

InnerLabelk has a value of :

InnerLabelk → {{Measurementsjk}, {Metadatajk}}

OmicsObject structure:

<|OuterLabel1 → <|InnerLabel1 → {{Measurements11}, {Metadata11}},
InnerLabel2 → {{Measurements12}, {Metadata12}},
InnerLabel3 → {{Measurements13}, {Metadata13}},
...,
InnerLabelk → {{Measurements1 k}, {Metadata1 k}},
...,
InnerLabelN → {{Measurements1 N}, {Metadata1 N}}|>,

OuterLabel2 → <|InnerLabel1 → {{Measurements21}, {Metadata21}},
InnerLabel2 → {{Measurements22}, {Metadata22}},
InnerLabel3 → {{Measurements23}, {Metadata23}},
...,
InnerLabelk → {{Measurements2 k}, {Metadata2 k}},
...,
InnerLabelN → {{Measurements2 N}, {Metadata2 N}}|>,

...,
OuterLabelj → <|InnerLabel1 → {{Measurementsj1}, {Metadataj1}},

InnerLabel2 → {{Measurementsj2}, {Metadataj2}},
InnerLabel3 → {{Measurementsj3}, {Metadataj3}},
...,
InnerLabelk → {{Measurementsjk}, {Metadatajk}},
...,
InnerLabelN → {{MeasurementsjN}, {MetadatajN}}|>,

...,
OuterLabelM → <|InnerLabel1 → {{MeasurementsM1}, {MetadataM1}},

InnerLabel2 → {{MeasurementsM2}, {MetadataM2}},
InnerLabel3 → {{MeasurementsM3}, {MetadataM3}},
...,
InnerLabelk → {{MeasurementsMk}, {MetadataMk}},
...,
InnerLabelN → {{MeasurementsMN}, {MetadataMN}}|>

|>

For any jth outer label, OuterLabelj, it is possible that the mth inner label, InnerLabelm is missing and takes a Missing[] value in the form

InnerLabelm → Missing[]. This can happen if the measurement was not performed for the sample, or no value was recorded (e.g. mass

spectrometry data).

Printed from the Complete Wolfram Language Documentation 2

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

For example here is a list of 3 samples using protein identifiers (specifically, these are UniProt accessions). The measurements are relative intensities in
this case and the metadata is the number of peptides per sample.

In[67]:= omicsObjectExample = "FirstSample" → {"A0AVT1"} → {{0.937}, {17}}, {"A0MZ66"} → {{1.059}, {9}},
{"A1A4S6"} → {{1.03}, {11}}, {"A1L0T0"} → {{1.268}, {4}}, {"A0FGR8"} → Missing[],

"SecondSample" → {"A0AVT1"} → {{1.003}, {17}}, {"A0MZ66"} → Missing[],
{"A1A4S6"} → {{0.779}, {11}}, {"A1L0T0"} → {{0.917}, {4}}, {"A0FGR8"} → {{0.921}, {24}},

"ThirdSample" → {"A0AVT1"} → {{1.064}, {19}}, {"A0MZ66"} → Missing[],
{"A1A4S6"} → {{0.545}, {5}}, {"A1L0T0"} → Missing[], {"A0FGR8"} → {{0.87}, {23}};

The outer labels of an OmicsObject are strings, while the inner labels are typically lists of strings.

Methods to Import Data as an OmicsObject

There are multiple methods to import data as an OmicsObject using MathIOmica. Four functions assist with importing data directly from text files:

(i) DataImporter provides a graphical dynamic interface that utilizes file headers to assist with the creation of OmicsObject variables from multiple

files.

(ii) The OmicsObjectCreator function provides a function to create an OmicsObject from already existing/imported data in a Mathematica notebook.

(iii) DataImporterDirect and (iv) DataImporterDirectLabeled provide additional expert mode functions that may be used to directly import data as

OmicsObject variables without a graphical interface.

Printed from the Complete Wolfram Language Documentation 3

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

DataImporter[associationName] provides a graphical interface to extract data and create
an OmicsObject variable associationName for associations
of information.

OmicsObjectCreator[outerLabels,
innerLabels, measurements,metadata]

creates an OmicsObject for use with MathIOmica. It uses
the following inputs:
 outerLabels Outer labels (keys) for the

OmicsObject.

 innerLabels Inner labels (keys) for
identifiers in the OmicsObject.

 measurements List of measurements for each
inner label.

 metadata List of metadata for each label.

DataImporterDirect[
positionsList, fileList, headerLines]

Expert Usage: The DataImporterDirect function is a helper

function originally created for DataImporter .

DataImporterDirect[
positionsList, fileList, headerLines]

 creates an

OmicsObject importing the column number in
positionsList from the fileList file path list, and importing
data by skipping a number of headerLines.

DataImporterDirectLabeled[
sampleRules, fileList, headerLines,
headerColumnAssociations]

Expert Usage: The DataImporterDirectLabeled function
creates an OmicsObject association for variableName,
by imporing data from the files at the paths specified in
the fileList, using the sampleRules as a label to column
header imported rule for each file, and the
headerColumnAssociations list of associations to associate
column headers to column positions for each file.

Functions for importing/creating OmicsObject datasets.

Working with OmicsObject Data

An OmicsObject is an association of associations, and so Query can be used directly to access and manipulate components. MathIOmica also offers

multiple functions that can implement computations and manipulation of an OmicsObject:

Printed from the Complete Wolfram Language Documentation 4

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Applier[function, inputData] applies function to OmicsObject, association or list
inputData components.

ApplierList[function, inputData] applies function to list of lists from an association, nested
association or components or a matrix inputData.

ConstantAssociator[
inputAssociation, associationAddition]

adds multi key constant to an OmicsObject (or an
association of associations) inputAssociation, with each
addition specified in a single association
associationAddition, of form <|addition1→
Value1,addition2→ Value2,...|>.

CreateTimeSeries[dataIn] creates a time series list across an OmicsObject dataIn
using outer Keys for points.

EnlargeInnerAssociation[omicsObjectList] combines a list of OmicsObject (associations of
associations) omicsObjectList elements by enlarging the
inner associations - inner association Keys must be
different.

EnlargeOuterAssociation[omicsObjectList] combines a list, omicsObjectList, of OmicsObject (or
associations of associations) elements to a combined
output by enlarging the outer associations - outer
association keys must be different.

FilteringFunction[omicsObject,cutoff] filters an OmicsObject data by a chosen comparison (by
default greatr or equal) to a cutoff .

FilterMissing[omicsObject, percentage] filters out data from omicsObject if across the datasets a
percentage of data points is missing.

LowValueTag[omicsObject, valueCutoff] takes an omicsObject and tags values in specified position

as Missing [] based on provided valueCutoff .

MeasurementApplier[function,omicsObject] applies a function to the measurement list of an
omicsObject, ignoring missing values.

OmicsObjectMerge[
{omicsObject1,omicsObject2, …}, f]

merges a list of OmicsObject components
{omicsObject1,omicsObject2, …}, using the function f to
combine values with the same inner and outer keys.

OmicsObjectPairedMerge[
omicsObject1,omicsObject2]

merges pairwise omicsObject1 and omicsObject2 values
that have the same inner and outer keys.

Returner[originalAssociation, update] returns a modified originalAssociation updated at a
specified position by the single association update, e.g.

from Applier or ApplierList result.

Functions for manipulating OmicsObject datasets.

Printed from the Complete Wolfram Language Documentation 5

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Functions for manipulating OmicsObject datasets.

Example Data

MathIOmica comes with multiple example data. The data can be found in the ConstantMathIOmicaExamplesDirectory :

We can get a listing of the current example Data by evaluating:

In[3]:= FileNames__, ConstantMathIOmicaExamplesDirectory

The data contains both initial (raw) data and additionally intermediate data that have been analyzed in MathIOmica and are used in the examples

(N.B. these files should not be altered or removed). The dynamic raw datasets are from an integrative Personal Omics Profile as described below:

integrative Personal Omics Profiling (iPOP) Data from the first integrative Omics Profiling (iPOP) is
used comprised of dynamics from proteomics
transcriptomics and metabolomics. The data corresponds
to a time series analysis of omics from blood componenets
from a single individual.
Different samples (from 7 to 21 included here) were
obtained at different time points. The time points included
here correspond to days ranging from 186th to the 400th
day of the study, (this can be represented in the following
sample to day association: ,7→186,8→255,9→289,10→
290,11→292,12→294,13→297,14→301,15→307,16→311,17→
322,18→329,19→369,20→380,21→400-. On day 289 the
subject of the study had a Respiratory syncytial virus
infection. Additionally, after day 301, the subject displayed
high glucose levels and was eventually diagnosed with
type 2 diabetes. The analyzed mapped data are used in
these examples for illustrative purposes - these and
additional dynamic omics data that will become available
can also be accessed MathIOmica website at
https://mathiomica.org. More information regarding the
iPOP dataset can also be found in the original iPOP paper:
Chen*, Mias*, Li- Pook-Than*, Jiang* et al.,
Personal Omics Profiling Reveals Dynamic

Molecular and Medical Phenotypes. Cell 148 (6),
p1293 (2012), PMID : 22 424236.
http : // dx.doi.org / 10.1016 / j.cell .2012× .02× .009.
and related review (including summary):
Mias and Snyder Personal Genomes Quantitative

Dynamic Omics and Personalized Medicine.
Quantitative Biology 1 (1) (2013), PMCID : PMC4366006.
http : // dx.doi.org / 10.1007 / s40484- 013- 0005- 3.

Printed from the Complete Wolfram Language Documentation 6

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Data from the first integrative Omics Profiling (iPOP) is
used comprised of dynamics from proteomics
transcriptomics and metabolomics. The data corresponds
to a time series analysis of omics from blood componenets
from a single individual.
Different samples (from 7 to 21 included here) were
obtained at different time points. The time points included
here correspond to days ranging from 186th to the 400th
day of the study, (this can be represented in the following
sample to day association: ,7→186,8→255,9→289,10→
290,11→292,12→294,13→297,14→301,15→307,16→311,17→
322,18→329,19→369,20→380,21→400-. On day 289 the
subject of the study had a Respiratory syncytial virus
infection. Additionally, after day 301, the subject displayed
high glucose levels and was eventually diagnosed with
type 2 diabetes. The analyzed mapped data are used in
these examples for illustrative purposes - these and
additional dynamic omics data that will become available
can also be accessed MathIOmica website at
https://mathiomica.org. More information regarding the
iPOP dataset can also be found in the original iPOP paper:
Chen*, Mias*, Li- Pook-Than*, Jiang* et al.,
Personal Omics Profiling Reveals Dynamic

Molecular and Medical Phenotypes. Cell 148 (6),
p1293 (2012), PMID : 22 424236.
http : // dx.doi.org / 10.1016 / j.cell .2012× .02× .009.
and related review (including summary):
Mias and Snyder Personal Genomes Quantitative

Dynamic Omics and Personalized Medicine.
Quantitative Biology 1 (1) (2013), PMCID : PMC4366006.
http : // dx.doi.org / 10.1007 / s40484- 013- 0005- 3.

Example iPOP Set Description File Names located in the
ConstantMathIOmicaExamplesDirectory.

iPOP Transcriptome. The
transcriptomic data included
was obtained from mapping of
the originally RNA Sequencing
raw data using the Tuxedo
suite. The data corresponds to
transcriptome from peripheral
blood mononuclear cells (PBMCs).

iPOP_ 07_genes.fpkm_tracking
iPOP_ 08_genes.fpkm_tracking
iPOP_ 09_genes.fpkm_tracking
iPOP_ 10_genes.fpkm_tracking
iPOP_ 11_genes.fpkm_tracking
iPOP_ 12_genes.fpkm_tracking
iPOP_ 13_genes.fpkm_tracking
iPOP_ 14_genes.fpkm_tracking
iPOP_ 15_genes.fpkm_tracking
iPOP_ 16_genes.fpkm_tracking
iPOP_ 17_genes.fpkm_tracking
iPOP_ 18_genes.fpkm_tracking
iPOP_ 19_genes.fpkm_tracking
iPOP_ 20_genes.fpkm_tracking
iPOP_ 21_genes.fpkm_tracking

iPOP Proteome. The Proteomics
data from analysis of mass
spectrometry data using the
Sequest algorithm implemented
by ProteomeDiscoverer. The data
corresponds to proteome from PBMCs.

The names of the files provide a
correspondence of samples to
Tandem Mass Tag labels in order
of increasing m/z values from
126 to 131 amu. 6 TMT labels
were used in each experiment.

The data has been adapted from the
original to UniProt accessions.

8_7_9_10_11_14_MulticonsensusReports_3Replicates.csv
8_12_13_15_16_14_MulticonsensusReports_3Replicates.cs
v
8_17_19_20_21_14_MulticonsensusReports_3Replicates.cs
v

iPOP Metabolome. The Metabolomics
data from analysis of mass
spectrometry data. The data
corresponds to small molecule
metabolomics from plasma ran
with technical triplicates.

The names of the files provide a
correspondence of samples ran
in positive or negative mode.

metabolomics_negative_mode.csv
metabolomics_positive_mode.csv

Description of Example iPOP original datasets and corresponding files in the ConstantMathIOmicaExamplesDirectory . N.B. this table is provided as a reference for the examples, and these files should not be altered or

removed.

Various analyzed datasets are used in the MathIOmica documentation for examples:

Printed from the Complete Wolfram Language Documentation 7

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Data Description File Name(s) located in the
ConstantMathIOmicaExamplesDirectory .

iPOP transcriptome imported as an
OmicsObject across all timepoints.

rnaExample

iPOP proteome data imported as an
OmicsObject across all timepoints.

proteinExample

iPOP metabolome data imported as an
OmicsObject across all timepoints
and technical replicates for
negative and positive mode aligned
mass spectrometry features.

metabolomicsNegativeModeExample
metabolomicsPositiveModeExample

Example time series from proteomics. proteinTimeSeriesExample

Example classification
results from proteomics.

proteinClassificationExample

Example classification
results from proteomics.

proteinClusteringExample

Example combined clustering
results from transcriptome,

proteome and metabolome data.

combinedClustersExample

Example enrichment analysis results
for Gene Ontology and KEGG
pathway analysis for combined
omics data in this tutorial.

combinedGOAnalysis
combinedKEGGAnalysis

Spectra from proteomics mass
spectrometry data examples.

small.pwiz.1.1.mzML
exampleMS3.mzXML

Description of example analyzed datasets and corresponding files in the ConstantMathIOmicaExamplesDirectory . N.B. this table is provided as a reference for the examples, and these files should not be altered or

removed.

Transcriptome Data
In this section we import the example transcriptome iPOP dataset, and illustrate a preprocessing approach for this omic dataset.

Importing OmicsObject Transcriptome Data

We first import the transcriptomics data example (for details on how to import such data please refer to DataImporter , DataImporterDirect ,

DataImporterDirectLabeled and OmicsObjectCreator documentation).

Printed from the Complete Wolfram Language Documentation 8

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We import the transcriptomics OmicsObject

In[68]:= rnaExample = GetFileNameJoinConstantMathIOmicaExamplesDirectory, "rnaExample"

Out[68]=

7 → {FAM138A, RNA} → {{0}, {OK}}, {OR4F5, RNA} → {{0}, {OK}},
{LOC729737, RNA} → {{2.73998}, {OK}}, ⋯ 25262⋯ , {LOC100507412, RNA} → {{0}, {OK}},
{RNA45S5, RNA} → {{0}, {OK}}, {DUX4L, RNA} → {{0}, {OK}},

8 →  ⋯ 1⋯ , ⋯ 11⋯ , 20 →  ⋯ 1⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

There are multiple samples given by the outer associations. We can use Query to get any data. For example we can get the outer keys:

In[69]:= Query[Keys]@rnaExample

Out[69]= {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

Notice that we have used "@" to form a Query using a prefix function application, which is used throughout the MathIOmica tutorials and documenta-

tion. This is the same as using the [] form:

In[70]:= Query[Keys][rnaExample]

Out[70]= {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

We can get the expression raw data from any sample and entry. For example, the 10th and 14th entries in sample 12:

In[71]:= Query["12", {7777, 55}]@rnaExample

Out[71]= /{NDNL2, RNA} → {{21.1197}, {OK}}, {ATAD3C, RNA} → {{0.560212}, {OK}}0

The keys correspond to "Gene Symbols" and are also tagged with an "RNA" label. The values of all the keys/IDs correspond to

{{measurements}, {metadata}}, and in this particular example {{"FPKM" values}, {"FPKM status"}}. Here, FPKM stands for

Fragments Per Kilobase of transcript per Million mapped reads. The example is from mapped RNA-Sequencing data. FPKM is then a relative measure

of transcript (gene) expression.

We can query all timepoints for a particular gene of interest if it exists. We must use the same labels as the actual keys of the OmicsObject:

In[72]:= Query[All, Key@{"NFKBIB", "RNA"}]@rnaExample

Out[72]= /7 → {{12.7644}, {OK}}, 8 → {{14.9997}, {OK}}, 9 → {{15.8482}, {OK}},
10 → {{17.3504}, {OK}}, 11 → {{18.5309}, {OK}}, 12 → {{16.7081}, {OK}}, 13 → {{14.6549}, {OK}},
14 → {{17.3951}, {OK}}, 15 → {{8.93065}, {OK}}, 16 → {{16.2545}, {OK}}, 17 → {{17.9217}, {OK}},
18 → {{16.0331}, {OK}}, 19 → {{18.7293}, {OK}}, 20 → {{10.8115}, {OK}}, 21 → {{12.9051}, {OK}}0

We note that we added Key@ before the bracket to indicate that this list is used as a key for the inner associations.

Printed from the Complete Wolfram Language Documentation 9

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can query all timepoints for multiple genes of interest if it exists. We must use the same labels as the actual keys of the OmicsObject:

In[73]:= Query[All, {Key@{"NFKBIB", "RNA"}, Key@{"NDNL2", "RNA"}}]@rnaExample

Out[73]= /7 → /{NFKBIB, RNA} → {{12.7644}, {OK}}, {NDNL2, RNA} → {{13.6201}, {OK}}0,
8 → /{NFKBIB, RNA} → {{14.9997}, {OK}}, {NDNL2, RNA} → {{16.3813}, {OK}}0,
9 → /{NFKBIB, RNA} → {{15.8482}, {OK}}, {NDNL2, RNA} → {{16.2763}, {OK}}0,
10 → /{NFKBIB, RNA} → {{17.3504}, {OK}}, {NDNL2, RNA} → {{17.2483}, {OK}}0,
11 → /{NFKBIB, RNA} → {{18.5309}, {OK}}, {NDNL2, RNA} → {{18.3254}, {OK}}0,
12 → /{NFKBIB, RNA} → {{16.7081}, {OK}}, {NDNL2, RNA} → {{21.1197}, {OK}}0,
13 → /{NFKBIB, RNA} → {{14.6549}, {OK}}, {NDNL2, RNA} → {{22.0412}, {OK}}0,
14 → /{NFKBIB, RNA} → {{17.3951}, {OK}}, {NDNL2, RNA} → {{17.1224}, {OK}}0,
15 → /{NFKBIB, RNA} → {{8.93065}, {OK}}, {NDNL2, RNA} → {{10.4774}, {OK}}0,
16 → /{NFKBIB, RNA} → {{16.2545}, {OK}}, {NDNL2, RNA} → {{23.6771}, {OK}}0,
17 → /{NFKBIB, RNA} → {{17.9217}, {OK}}, {NDNL2, RNA} → {{21.8782}, {OK}}0,
18 → /{NFKBIB, RNA} → {{16.0331}, {OK}}, {NDNL2, RNA} → {{21.4414}, {OK}}0,
19 → /{NFKBIB, RNA} → {{18.7293}, {OK}}, {NDNL2, RNA} → {{19.9134}, {OK}}0,
20 → /{NFKBIB, RNA} → {{10.8115}, {OK}}, {NDNL2, RNA} → {{22.5756}, {OK}}0,
21 → /{NFKBIB, RNA} → {{12.9051}, {OK}}, {NDNL2, RNA} → {{22.55}, {OK}}00

Or in a more concise form

In[74]:= Query[All, Key[#] & /@ {{"NFKBIB", "RNA"}, {"NDNL2", "RNA"}}]@rnaExample

Out[74]= /7 → /{NFKBIB, RNA} → {{12.7644}, {OK}}, {NDNL2, RNA} → {{13.6201}, {OK}}0,
8 → /{NFKBIB, RNA} → {{14.9997}, {OK}}, {NDNL2, RNA} → {{16.3813}, {OK}}0,
9 → /{NFKBIB, RNA} → {{15.8482}, {OK}}, {NDNL2, RNA} → {{16.2763}, {OK}}0,
10 → /{NFKBIB, RNA} → {{17.3504}, {OK}}, {NDNL2, RNA} → {{17.2483}, {OK}}0,
11 → /{NFKBIB, RNA} → {{18.5309}, {OK}}, {NDNL2, RNA} → {{18.3254}, {OK}}0,
12 → /{NFKBIB, RNA} → {{16.7081}, {OK}}, {NDNL2, RNA} → {{21.1197}, {OK}}0,
13 → /{NFKBIB, RNA} → {{14.6549}, {OK}}, {NDNL2, RNA} → {{22.0412}, {OK}}0,
14 → /{NFKBIB, RNA} → {{17.3951}, {OK}}, {NDNL2, RNA} → {{17.1224}, {OK}}0,
15 → /{NFKBIB, RNA} → {{8.93065}, {OK}}, {NDNL2, RNA} → {{10.4774}, {OK}}0,
16 → /{NFKBIB, RNA} → {{16.2545}, {OK}}, {NDNL2, RNA} → {{23.6771}, {OK}}0,
17 → /{NFKBIB, RNA} → {{17.9217}, {OK}}, {NDNL2, RNA} → {{21.8782}, {OK}}0,
18 → /{NFKBIB, RNA} → {{16.0331}, {OK}}, {NDNL2, RNA} → {{21.4414}, {OK}}0,
19 → /{NFKBIB, RNA} → {{18.7293}, {OK}}, {NDNL2, RNA} → {{19.9134}, {OK}}0,
20 → /{NFKBIB, RNA} → {{10.8115}, {OK}}, {NDNL2, RNA} → {{22.5756}, {OK}}0,
21 → /{NFKBIB, RNA} → {{12.9051}, {OK}}, {NDNL2, RNA} → {{22.55}, {OK}}00

We should also note that we can take advantage of Mathematica's native direct access to Wolfram Alpha, to look up any "Gene Symbol" information by
evaluating (needs a network connection):

In[75]:= NFKBIB2

Here is an image of the output:

Printed from the Complete Wolfram Language Documentation 10

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Printed from the Complete Wolfram Language Documentation 11

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Processing Transcriptome Mapped Data

We will next preprocess the imported transcriptome data. We will first relabel the data, carry out quantile normalization and filtering and we will

finally create time series.

Labeling, Normalization and Filtering

Re-labeling Samples with Times

First, we illustrate how to change the outer keys. In this example, we notice that the sample numberings do not correspond to actual days, so we may

want to adjust the outer keys to correspond to real times.

We form an association between samples to actual days of the study:

In[76]:= sampleToDays =
3"7" → "186", "8" → "255", "9" → "289", "10" → "290", "11" → "292", "12" → "294", "13" → "297", "14" → "301",
"15" → "307", "16" → "311", "17" → "322", "18" → "329", "19" → "369", "20" → "380", "21" → "400"4;

Printed from the Complete Wolfram Language Documentation 12

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can now do a KeyMap to rename the outer keys:

In[77]:= rnaLongitudinal = KeyMap[sampleToDays, rnaExample]

Out[77]=

186 → {FAM138A, RNA} → {{0}, {OK}},
{OR4F5, RNA} → {{0}, {OK}}, {LOC729737, RNA} → {{2.73998}, {OK}}, ⋯ 25262⋯ ,
{LOC100507412, RNA} → {{0}, {OK}}, {RNA45S5, RNA} → {{0}, {OK}}, {DUX4L, RNA} → {{0}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Quantile Normalization

QuantileNormalization[data] performs quantile normalization of data.

QuantileNormalization can perform quantile normalization across various samples for multiple forms of data, including OmicsObject and matrix data.

We normalize the transcriptome data using the QuantileNormalization function. The Measurement is located in position 1, 1 in the list.

In[78]:= rnaQuantileNormed = QuantileNormalizationrnaLongitudinal, ListIndex → 1, ComponentIndex → 1

Out[78]=

186 → {FAM138A, RNA} → {{0.}, {OK}}, {OR4F5, RNA} → {{0.}, {OK}},
{LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25262⋯ , {LOC100507412, RNA} → {{0.}, {OK}},
{RNA45S5, RNA} → {{0.}, {OK}}, {DUX4L, RNA} → {{0.}, {OK}}, ⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Tag Missing and Low Values

Next, we will tag values of less than 1 FPKM as Missing. Additionally, we will treat values of FPKM less than 5 as "noise" and set them all to a token

value of 1.

LowValueTag[omicsObject, valueCutoff] takes an omicsObject and tags values in specified position
as Missing[] based on provided valueCutoff .

LowValueTag allows us to tag low values.

Printed from the Complete Wolfram Language Documentation 13

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

ComponentIndex 1 Selection of which component of a list to
use in the association or OmicsObject
input values.

ListIndex 1 Selection of which list to use in the
association or OmicsObject input values.

OtherReplacement _Missing :>
Missing[]

Replacement rule for any other kind of
replacement in the data.

ValueReplacement Missing[] Value that specifies how tagged data
points will be replaced.

Options for LowValueTag .

We first use LowValueTag to tag values of 0 as Missing[]:

In[79]:= rnaZeroTagged = LowValueTagrnaQuantileNormed, 0

Out[79]=

186 → {FAM138A, RNA} → {{Missing[]}, {OK}},
{OR4F5, RNA} → {{Missing[]}, {OK}}, {LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25263⋯ ,
{RNA45S5, RNA} → {{Missing[]}, {OK}}, {DUX4L, RNA} → {{Missing[]}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We next use LowValueTag again to set all FPKM values <1 to unity:

In[80]:= rnaNoiseAdjusted = LowValueTag[rnaZeroTagged, 1, ValueReplacement → 1]

Out[80]=

186 → {FAM138A, RNA} → {{Missing[]}, {OK}},
{OR4F5, RNA} → {{Missing[]}, {OK}}, {LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25263⋯ ,
{RNA45S5, RNA} → {{Missing[]}, {OK}}, {DUX4L, RNA} → {{Missing[]}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Filter Data

We will next remove values that have been tagged as Missing[], retaining data that have at least 3/4 data points available across all samples. Here we

use the function FilterMissing :

FilterMissing[omicsObject, percentage] filters out data from omicsObject, retaining data across the
datasets with a percentage of data points not missing.

FilterMissing allows the removal of data marked as Missing[], and retains only data with measurements available for a certain percentage of samples.

Printed from the Complete Wolfram Language Documentation 14

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

MininumPoints 3 Minimum number of datapoints to keep.

Reference {} Select a reference outer key for which
should remove dataset if the reference
point has a Missing value.

ShowPlots True Whether to show summary plots.

Options for FilterMissing .

In this dataset we will use a reference point, day "255" which was a healthy measurement.

Hence, we filter out data where the reference point "255" is missing and retain data with at least 3/4 points available:

In[81]:= rnaFiltered = FilterMissingrnaNoiseAdjusted, 3/4, Reference → "255"

Printed from the Complete Wolfram Language Documentation 15

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

{Missing -> Counts: , /0 → 18427, 1 → 68410}

0
1

Out[81]=

186 → {FAM138A, RNA} → {{Missing[]}, {OK}},
{OR4F5, RNA} → {{Missing[]}, {OK}}, {LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25263⋯ ,
{RNA45S5, RNA} → {{Missing[]}, {OK}}, {DUX4L, RNA} → {{Missing[]}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Create Transcriptome Time Series

We can now create time series for each of the genes. MathIOmica provides functions to facilitate the process, such as CreateTimeSeries and

TimeExtractor . The functions assume an OmicsObject as an input for which times have been used as the sample labels (outer keys).

Printed from the Complete Wolfram Language Documentation 16

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

CreateTimeSeries[omicsObject] creates a time series list across an OmicsObject using
outer keys as times.

TimeExtractor[omicsObject] extracts a list of sorted times from an OmicObject's outer
keys.

We extract the times for the filtered RNA data using TimeExtractor :

In[82]:= timesRNA = TimeExtractorrnaFiltered

Out[82]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

For each gene we now extract a time series (list of values) corresponding to these times:

In[83]:= timeSeriesRNA = CreateTimeSeriesrnaFiltered

Out[83]=

{FAM138A, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{OR4F5, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{LOC729737, RNA} → {2.2946, 1, 4.67694, 4.48131, 4.95507, 1,

1.25726, 2.14767, 1.93219, 1, 2.58217, 2.31301, 4.10284, 3.80929, 1.45471},
{DDX11L1, RNA} → {5.91665, 4.32081, 3.19599, 3.64164, 2.7327, 2.13461, 2.17168,

3.23429, 1.89576, 3.0267, 4.34004, 7.27001, 2.01132, 9.27701, 7.54415},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

{LOC100507412, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{RNA45S5, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{DUX4L, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

large output show less show more show all set size limit...

Take Log Ratios Compared to Reference in Transcriptome Time Series

Next, we want to use log ratios of expression at any time point compared to a healthy datapoint.

SeriesApplier[function,data] applies a given function to data, an association of lists,
implementing masking for Missing values.

Applying a function to a series with Missing data.

Printed from the Complete Wolfram Language Documentation 17

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We first use SeriesApplier to implement the logarithm:

In[84]:= timeSeriesRNALog = SeriesApplierLog, timeSeriesRNA

Out[84]=

{FAM138A, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{OR4F5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{LOC729737, RNA} → {0.830556, 0, 1.54264, 1.49992, 1.60041, 0, 0.228935,

0.764385, 0.658653, 0, 0.94863, 0.838548, 1.41168, 1.33744, 0.374807},
{DDX11L1, RNA} → {1.77777, 1.46344, 1.1619, 1.29243, 1.00529, 0.758282, 0.775501,

1.17381, 0.639619, 1.10747, 1.46788, 1.98376, 0.698792, 2.22754, 2.02077},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{LOC100507412, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{RNA45S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{DUX4L, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

large output show less show more show all set size limit...

Now we need to compare to use log ratios of expression at any time point compared to a healthy datapoint. We can use the function

SeriesInternalCompare :

SeriesInternalCompare[associationOfLists] compares each value in each list of associationOfLists to
an internal reference value in the list, if the reference point
itself is not Missing.

Comparing values in a series to an internal reference point in the series.

Printed from the Complete Wolfram Language Documentation 18

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

CompareFunction (If[MatchQ[
Head[#2],
Missing],

Missing[],
(#1- #2)]&)

The function is used by a Query operation
on non-missing input data. Namely:
QueryAll,CompareFunction

#,#ComparisonIndex&@

ComparisonIndex 1 List position of list value that will be used
as a reference data point.

DeleteRule {Head, Missing} DeleteRule allows the customization of
how to select values for the reference data
point for which its key should be deleted.
The DeleteRule value takes the
structure
deleteRuleOptionValue =

{MatchQ first argument,
MatchQ second argument}

.

The MatchQ function referred to here is
implemented by SeriesInternalCompare
internally, and uses the
deleteRuleOptionValue as:
MatchQ[

deleteRuleOptionValue[[1]][
reference

comparison value],
deleteRuleOptionValue[[2]]]

The default removes the corresponding
key if the value used for reference in the
comparison is actually Missing, i.e. the
comparison reference point has Head that
matches Missing.

Options for SeriesInternalCompare .

Printed from the Complete Wolfram Language Documentation 19

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We compare every value in each series to the healthy "255" time point, which is the second element in each series:

In[85]:= rnaCompared = SeriesInternalComparetimeSeriesRNALog, ComparisonIndex → 2

Out[85]=

{FAM138A, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{OR4F5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{LOC729737, RNA} → {0.830556, 0, 1.54264, 1.49992, 1.60041, 0, 0.228935,

0.764385, 0.658653, 0, 0.94863, 0.838548, 1.41168, 1.33744, 0.374807},
{DDX11L1, RNA} → {0.314326, 0., -0.301545, -0.171011, -0.458154, -0.705162, -0.687943,

-0.289634, -0.823824, -0.35597, 0.00444068, 0.520314, -0.764652, 0.764095, 0.557328},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{LOC100507412, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{RNA45S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{DUX4L, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

large output show less show more show all set size limit...

Take the Norm and Remove Constant Transcriptome Time Series

Next, we normalize each series, using again SeriesApplier :

In[86]:= normedRNACompared = SeriesApplierNormalize, rnaCompared

Out[86]=

{FAM138A, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{OR4F5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{LOC729737, RNA} → {0.218293, 0., 0.40545, 0.39422, 0.420632, 0., 0.0601705,

0.200902, 0.173112, 0., 0.249326, 0.220394, 0.371029, 0.351517, 0.0985097},
{DDX11L1, RNA} → {0.156411, 0., -0.150051, -0.0850959, -0.22798, -0.350893, -0.342324,

-0.144124, -0.40994, -0.177133, 0.00220971, 0.258911, -0.380495, 0.380218, 0.27733},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{LOC100507412, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{RNA45S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{DUX4L, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

large output show less show more show all set size limit...

ConstantSeriesClean[dataIn] removes constant list series from an association of lists.

Removing constant series.

Printed from the Complete Wolfram Language Documentation 20

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Finally, we use ConstantSeriesClean to remove constant series, as we are interested in changing time patterns:

In[87]:= rnaFinalTimeSeries = ConstantSeriesClean[normedRNACompared]

Removed series and returning filtered
list. If you would like a list of removed keys run the
command ConstantSeriesClean[data,ReturnDropped → True].

Out[87]=

{LOC729737, RNA} → 0.218293, 0., 0.40545, 0.39422, 0.420632, 0., 0.0601705,
⋯ 20⋯ , 0.173112, 0., 0.249326, 0.220394, 0.371029, 0.351517, 0.0985097, ⋯ 11783⋯ 

large output show less show more show all set size limit...

Resampling Transcriptome Data

In addition to the above, we want to create a resampled distribution for the transcriptome dataset prior to classification and clustering. In this

subsection we first resample the imported and labeled transcriptome dataset, Then, we carry out the full analysis in this "bootstrap" dataset, to

create a set of random time series. This bootstrap distribution of time series will be used to provide the cutoffs used in the time series classification in

the following subsection.

Resampling the Transcriptome Data

First, we use BootstrapGeneral :

BootstrapGeneral[
omicsObject, numberResampled]

performs a resampling of the omicsObject data with
replacement, and generates a new association structure
with numbering corresponding to the numberResampled of
new identities.

We can perform resampling of an OmicsObject to create a bootstrap dataset to be used for statistical considerations.

We create a resampling of 100000 sets:

In[88]:= rnaBootstrap = BootstrapGeneralrnaLongitudinal, 100000

Out[88]=

186 → 1 → {{5.5402}, {OK}}, 2 → {{0}, {OK}}, 3 → {{0.00246625}, {OK}},
4 → {{12.7439}, {OK}}, 5 → {{0}, {OK}}, ⋯ 99990⋯ , 99996 → {{0.347246}, {OK}},
99 997 → {{12.2697}, {OK}}, 99998 → {{0}, {OK}}, 99999 → {{0}, {OK}}, 100 000 → {{0}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing the Bootstrap Transcriptome and Creating Bootstrap Time Series

We normalize the transcriptome bootstrap data using the QuantileNormalization function:

In[89]:= rnaBootstrapQuantileNormed = QuantileNormalizationrnaBootstrap, ListIndex → 1, ComponentIndex → 1;

Printed from the Complete Wolfram Language Documentation 21

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We use LowValueTag to tag zero values as Missing[]:

In[90]:= rnaBootstrapZeroTagged = LowValueTagrnaBootstrapQuantileNormed, 0;

We next use LowValueTag again to set all FPKM values <1 to unity:

In[91]:= rnaBootstrapNoiseAdjusted = LowValueTag[rnaBootstrapZeroTagged, 1, ValueReplacement → 1];

Next, we filter out data where the reference point "255" is missing and retain data with at least 3/4 points available:

In[92]:= rnaBootstrapFiltered = FilterMissingrnaBootstrapNoiseAdjusted, 3/4, Reference → "255"

Printed from the Complete Wolfram Language Documentation 22

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

{Missing -> Counts: , /0 → 72929, 1 → 270710}

0
1

Out[92]=

186 → 1 → {{4.74683}, {OK}}, 2 → {{Missing[]}, {OK}}, 3 → {{1}, {OK}},
4 → {{11.6602}, {OK}}, ⋯ 99992⋯ , 99997 → {{11.2634}, {OK}}, 99998 → {{Missing[]}, {OK}},
99 999 → {{Missing[]}, {OK}}, 100000 → {{Missing[]}, {OK}}, ⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Printed from the Complete Wolfram Language Documentation 23

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

For each bootstrap member we now extract a time series (list of values) corresponding to the series times:

In[93]:= timeSeriesBootstrapRNA = CreateTimeSeriesrnaBootstrapFiltered

Out[93]=

1 → {4.74683, 1, 204.567, 1, 1, 1, 3.21745, 6.86314, 1, 1, 1, 1, 1, 6.62081, 1.12378}, ⋯ 99998⋯ ,
100000 → {Missing[], 1, 1, 1, 1, 28.9646, 1, 1, 9.1248, 1, 1, 1, 1.01897, 18.9606, 1}

large output show less show more show all set size limit...

We use SeriesApplier to implement a logarithm:

In[94]:= timeSeriesBootstrapRNALog = SeriesApplierLog, timeSeriesBootstrapRNA

Out[94]=

1 → {1.55748, 0, 5.32089, 0, 0, 0, 1.16859, 1.92616, 0, 0, 0, 0, 0, 1.89022, 0.116702}, ⋯ 99998⋯ ,
100000 → {Missing[], 0, 0, 0, 0, 3.36607, 0, 0, 2.211, 0, 0, 0, 0.0187912, 2.94236, 0}

large output show less show more show all set size limit...

We compare every value in each series to the healthy "255" time point, which is the second element in each series:

In[95]:= rnaBootstrapCompared = SeriesInternalComparetimeSeriesBootstrapRNALog, ComparisonIndex → 2

Out[95]=

1 → {1.55748, 0, 5.32089, 0, 0, 0, 1.16859, 1.92616, 0, 0, 0, 0, 0, 1.89022, 0.116702}, ⋯ 99998⋯ ,
100000 → {Missing[], 0, 0, 0, 0, 3.36607, 0, 0, 2.211, 0, 0, 0, 0.0187912, 2.94236, 0}

large output show less show more show all set size limit...

Next, we normalize each series, using again SeriesApplier :

In[96]:= normedBootstrapRNACompared = SeriesApplierNormalize, rnaBootstrapCompared

Out[96]=

1 → {0.248127, 0., 0.84769, 0., 0., 0., 0.186172, 0.306864, 0., 0., 0., 0., 0., 0.301137, 0.0185922},
⋯ 99 998⋯ , 100000 → Missing[], 0., 0., 0., 0., ⋯ 5⋯ , 0., 0., 0.00376754, 0.589928, 0.

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean to remove constant series, as we are interested in changing time patterns:

In[97]:= rnaBootstrapFinalTimeSeries = ConstantSeriesClean[normedBootstrapRNACompared]

Removed series and returning filtered
list. If you would like a list of removed keys run the
command ConstantSeriesClean[data,ReturnDropped → True].

Out[97]=

1 → {0.248127, 0., 0.84769, 0., 0., 0., 0.186172, 0.306864, 0., 0., 0., 0., 0., 0.301137, 0.0185922},
⋯ 99 965⋯ , 100000 → Missing[], 0., 0., 0., 0., ⋯ 5⋯ , 0., 0., 0.00376754, 0.589928, 0.

large output show less show more show all set size limit...

Printed from the Complete Wolfram Language Documentation 24

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Classification of Transcriptome Time Series

In this subsection we will classify the transcriptome time series based on patterns in the series. For the classification we will use

TimeSeriesClassification .

TimeSeriesClassification[data, setTimes] takes a data association (or list of lists) of values
corresponding to intensities collected over time and
classifies the values into classes (groups) that show
distinct similar temporal patterns.
TimeSeriesClassification takes as inputs:
data Association with series as values,

or a list of series, where the
series contain information
regarding time
intensities/observations. Each
series may include Missing data
points and may be entered as list
of N signal intensities
corresponding one-to-one to
the N setTimes with Missing
inserted appropriately if the data
is absent, {X1=X (t1),

X2=X (t2),...,
XN=X (tN)}

.

Alternatively, each series data
may be a list of pairs of values
{{t1,X1},{t2,X2},. ..,{tN,XN}} for
only existing measurements.

setTimes A global complete set of all
possible N times during which all
data series could have been
collected in the window of the
experiment, including times for
which no values were reported
or are missing,
{t1, t2, ..., tN}.

Classifying a set of time series based on temporal behavior.

option name default value

Printed from the Complete Wolfram Language Documentation 25

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

AutocorrelationCutoffs {0} Cutoffs, for "Autocorrelation" and
"InterpolatedAutocorrelation" methods,
for different lags that will be used to filter
out data series for which the lags are not
within cutoffs. The list length corresponds
to cuttofs at different lags, with the ith lag
cutoff provided as the ith index, i.e.
ρc=ρc1,ρc2,,...,ρci,,..., ρjk up to k, where
1 ≤ k ≤ n, and typically
n = Floor[Length[setTimes]/2].
The classification will only consider lags up
to the length of the list provided. The
cutoffs are user-provided and typically
calculated through simulation.

AutocorrelationLogic False Option to return the autocorrelation logic
list for each signal, with the default set to
False . If set to True, a logic vector is
returned indicating whether or not at a
particular lag the autocorrelation for a
signal is above or below the
AutocorrelationCutoffs.

AutocorrelationOptions UpperFrequencyFact-
or

→ 1

Options that are used by the internal
Autocorrelation function in the case that
the Method → "Autocorrelation" is
set.

InterpolationDeltaT "Auto" Time step used to grid the time window
over which calculations will be performed.
If set to "Auto" the step will correspond to
dividing the span of the interval into a
number of equal steps equal to the
number of input time points.

InterpolationOptions {} Options list for the internal Interpolation
function used to interpolate between data
points that have Missing values or
uneven spacing.

LombScargleCutoff 0 Cutoff value for "LombScargle" method,
for filtering the highest intensity observed
in the power spectrum. The cutoff is user-
provided and typically calculated through
simulation.

Printed from the Complete Wolfram Language Documentation 26

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Cutoff value for "LombScargle" method,
for filtering the highest intensity observed
in the power spectrum. The cutoff is user-
provided and typically calculated through
simulation.

LombScargleOptions {PairReturn→
False,

NormalizeIntens-
ities→ True}

Options that are used by the internal
LombScargle function if the case that the
Method → "LombScargle" is set.

Method "LombScargle" Selection of which algorithm to use in the
classification scheme.

ReturnAllSpikes False Option whether each signal may maintain
unique membership to each spike class, or
be allowed to belong to multiple classes.
Used in "Autocorrelation" and
"InterpolatedAutocorrelation" methods. If
set to False, first spike maxima are
classified, and only signals found not to
belong to spike maxima are then
considered for membership in the spike
minima class.

ReturnData True If set to True will return input keys to data
associations in the classification. If set to
False will only return the keys of the input
data in the classification.

ReturnModels False Whether to return the models as well as
the classification information for the input
data. The data is returned as an
association with the key
"TimeSeriesClasses" for classification
groups and one of the following: (i)
"Models" for model-based methods, (ii)
"LombScargle" for periodograms in the
"LombScargle" method, (iii)
"Autocorrelations" for autocorrelation
based methods.

Printed from the Complete Wolfram Language Documentation 27

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

SpikeCutoffs <|1 →{.99,-99},
2 → {.99,-99}|>

Association with number, n, of data points
as keys, and values corresponding to
cutoffs, in the form
<|n → {Maximum Spike Cutoffn,

Minimum Spike Cutoffn}|>

used to call spike maxima and minima for
a time series with this number of
datapoints. The values are provided by the
user depending on data approach based
on simulation. The default values are only
place-holders and should be replaced by
real values. The association must have
corresponding keys for all lengths of input
datasets, so that
Keys[OptionValue[

SpikeCutoffs]] ∈
{Possible lengths of

numeric data}.

 , i.e. all

possible lengths of series constructed by
excluding Missing or other non-numeric
values).

Options for TimeSeriesClassification .

TimeSeriesClassification uses multiple methods to classify data. The periodogram/autocorrelation methods used use cutoffs from simulation/user-

provided values, to assess class membership based on statistical significance. In this tutorial we will use the "LombScargle" method, to classify data

based on a Lomb-Scargle computation of a periodogram. The data is classified based into classes major (highest intensity) frequencies based on the

generated periodogram for a signal, when the intensity of this frequency is above an intensity threshold cutoff. Additionally, data that displays spikey

behavior in the real intensity, that is not classified into any frequency classes, is classified as a SpikeMaximum or SpikeMinimum if the spike is higher

or lower respectively than what one would expect from a random signal.

Method Description

Printed from the Complete Wolfram Language Documentation 28

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

"LombScargle" Classification based on periodograms (power spectra)
generated by a Lomb-Scargle computation as
implemented internally by the LombScargle function. The
data is classified into classes of major (highest intensity)
frequencies and spikes (maxima or minima in real signal
intensity), depending on cutoffs typically provided by
simulation and passed to the function by the
LombScargleCutoffs and SpikeCutoffs option
values. The returned {computed classification vector} for
this method is the intensity list of the periodogram for
each signal.

"Autocorrelation" Classification based on autocorrelations generated by a
Lomb-Scargle approach using an inverser Fourier
transform of spectral intensities, as implemented through
the Autocorrelation function. The data is classified into
autocorrelations at different lags and spikes (maxima or
minima) classes, depending on cutoffs typically provided
by simulation. The returned {computed classification
vector} for this method is the autocorrelation list for each
signal.

"InterpolatedAutocorrelation" Classification based on autocorrelations generated
directly in time, with Missing data handled through
interpolation. The data is classified into autocorrelations
at different lags and spikes (maxima or minima) classes
depending on cutoffs typically provided by simulation.
The returned {computed classification vector} for this
method is the autocorrelation list for each signal.

"TimeSeriesModelAggregate" Classification based on model fitting of time series
through TimeSeriesModelFit and all available models
therein. The data is classified into aggregate model
classes. The returned {computed classification vector} for
this method is the actual input signal.

Printed from the Complete Wolfram Language Documentation 29

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Classification based on model fitting of time series
through TimeSeriesModelFit and all available models
therein. The data is classified into aggregate model
classes. The returned {computed classification vector} for
this method is the actual input signal.

"TimeSeriesModelDetailed" Classification based on model fitting of time series
through TimeSeriesModelFit and all available models
therein. The data is classified into model classes based on
individual model degree parameters. The returned
{computed classification vector} for this method is the
"BestFitParameters" for the model fit. If this list is empty
an integer list is returned {token integer} - this is used in
subsequent clustering applications.

Methods for TimeSeriesClassification .

To create the cutoffs for the classification we will first use the bootstrap time series set created in the previous subsection, and QuantileEstimator .

QuantileEstimator[data, timepoints] obtains the quantile estimator following bootstrap for
time series. It takes as inputs:
 data Association or list with series

as values, from which to
generate a distribution.

 timepoints Timepoints over which the
time series run.

Estimating the quantile value that can be used as a cutoff for classification of time series based on bootstrap simulations.

Printed from the Complete Wolfram Language Documentation 30

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

AutocorrelationOptions {} Specific options when calculating
autocorrelations for the time series.

InterpolationDeltaT "Auto" Time step used to grid the time window
over which calculations will be performed.
If set to "Auto" the step will correspond to
dividing the span of the interval into a
number of equal steps equal to the
number of input time points.

InterpolationOptions {} Options list for the internal Interpolation
function used to interpolate between data
points that have Missing values or uneven
spacing.

LombScargleOptions {PairReturn →
False,

NormalizeIntens-
ities→ True}

Specific options when calculating
LombScargle periodograms for the time
series.

Method "LombScargle" Method of calculation. Choices include one
of the following:
{"LombScargle","Autocorrelation",
"InterpolatedAutocorrelation","Spikes"}

QuantileValue 0.95 Which quantile to extract.

Options for QuantileEstimator .

Depending on the cutoffs we would like to generate, we select the appropriate Method (also considering the Method that the downstream

TimeSeriesClassification will use).

Printed from the Complete Wolfram Language Documentation 31

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Method Description

"Autocorrelation" List of values corresponding to selected quantile of
autocorrelations, with the ith lag quantile provided as the
ith index, i.e. ρc=ρc1,ρc2,,...,ρci,,..., ρck up to k lags, where
1≤ k ≤ n, and typically n=Floor[Length[timepoints]/2]. The
method utilizes the Autocorrelation function internally.

"InterpolatedAutocorrelation" List of values corresponding to selected quantile for
autocorrelations, with the ith lag quantile provided as the
ith index, i.e. ρc=ρc1,ρc2,,...,ρci,,..., ρck up to k lags, where
1≤ k ≤ n, and typically n=(Length[timepoints]-1). The
method utilizes an Interpolation followed by a
CorrelationFunction implementation to compute
autocorrelations, i.e. missing data or uneven sampling is
handled by data interpolation.

"LombScargle" Single value corresponding to selected quantile of
maximum peak intensity of periodogram. The method
utilizes the LombScargle function internally.

"Spikes" Association with number, n, of data points as keys, and
values corresponding to quantiles for maxima and minima
of the series, in the form
<|n → {Maximum Spike Quantilen,

Maximum Spike Quantilen}|>
 . The keys are

generated automatically so that so that
Keys[output] ∈

{Possible lengths of numeric data}.
 , i.e. all

possible lengths of input series constructed by excluding
Missing or other non-numeric values).

Method selection and output for QuantileEstimator .

The default output for TimeSeriesClassification is an Association with outer keys being the classification classes, inner keys being the class mem-

bers, and each class member value being a list of {{computed classification vector}, {input data list}}. The general output

structure is for M output classes of each having mi members:

<| Class1 → <|Member11 → {{classification vector11}, {input data vector11}},
Member12 → {{classification vector12}, {input data vector12}}, ...,
Member1 m1 → {{classification vector1 m1}, {input data vector1 m1}}|>,

Class2 → <|Member21 -> {{classification vector21}, {input data vector21}},
Member22 -> {{classification vector22}, {input data vector22}}, ...,
Member2 m2 → {{classification vector2 m2}, {input data vector2 m2}}|>, ...,

ClassM → <|MemberM1 -> {{classification vectorM1}, {input data vectorM1}},
MemberM2 -> {{classification vectorM2}, {input data vectorM2}}, ...,
MemberMmM → {{classification vectorMmM}, {input data vectorMmM}}|>|>

Printed from the Complete Wolfram Language Documentation 32

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Before we classify our transcriptome data, we estimate for the "LombScargle" Method a 0.95 quantile cutoff from the bootstrap transcriptome data:

In[263]:= q95RNA = QuantileEstimatorrnaBootstrapFinalTimeSeries, timesRNA

0.860232

Next, we estimate the "Spikes" 0.95 quantile cutoff from the bootstrap transcriptome data:

In[264]:= q95RNASpikes = QuantileEstimatorrnaBootstrapFinalTimeSeries, timesRNA, Method → "Spikes"

Out[264]= /14 → {0.884016, -0.348069}, 15 → {0.858813, -0.337635}0

Now we can classify the transcriptome time series data based on these cutoffs:

In[265]:= rnaClassification = TimeSeriesClassificationrnaFinalTimeSeries,
timesRNA, LombScargleCutoff → q95RNA, SpikeCutoffs → q95RNASpikes

Method → "LombScargle"

Out[265]=

SpikeMax → {ATAD3C, RNA} → {0.0855374, 0.204135, 0.219303, 0.378496, 0.5849, 0.346012, 0.545735},
0., 0., 0., 0., ⋯ 7⋯ , 0., 0., 0.075919, 0., ⋯ 821⋯ , ⋯ 7⋯ , f7 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

The default output for TimeSeriesClassification is an Association with outer keys being the classification classes, inner keys being the class members,

and each class member value being a list of {{computed classification vector}, {input data list}}. The general output structure is

for M output classes of each having mi members:

<| Class1 → <|Member11 → {{classification vector11}, {input data vector11}},
Member12 → {{classification vector12}, {input data vector12}}, ...,
Member1 m1 → {{classification vector1 m1}, {input data vector1 m1}}|>,

Class2 → <|Member21 -> {{classification vector21}, {input data vector21}},
Member22 -> {{classification vector22}, {input data vector22}}, ...,
Member2 m2 → {{classification vector2 m2}, {input data vector2 m2}}|>, ...,

ClassM → <|MemberM1 -> {{classification vectorM1}, {input data vectorM1}},
MemberM2 -> {{classification vectorM2}, {input data vectorM2}}, ...,
MemberMmM → {{classification vectorMmM}, {input data vectorMmM}}|>|>

If we want the classes produced, we can query the keys:

In[101]:= KeysrnaClassification

Out[101]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7

For the number of members in each class we have:

In[266]:= Query[All, Length]@rnaClassification

Out[266]= SpikeMax → 822, SpikeMin → 5963, f1 → 116, f2 → 3, f3 → 30, f4 → 128, f5 → 35, f6 → 13, f7 → 61

Printed from the Complete Wolfram Language Documentation 33

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can obtain the membership list in any class of interest:

In[267]:= Query"f1", Keys@rnaClassification

Out[267]= {PADI4, RNA}, {AHDC1, RNA}, {CCDC28B, RNA}, {AGO1, RNA}, {JAK1, RNA}, C1orf52, RNA, {IARS2, RNA},
{URB2, RNA}, {HSPA14, RNA}, {WBP1L, RNA}, {PDZD8, RNA}, {LOC102288414, RNA}, {TRMT112, RNA},
{DRAP1, RNA}, {CDK2AP2, RNA}, {FAM168A, RNA}, {FLI1, RNA}, {EFCAB4B, RNA}, {EMG1, RNA}, {NDUFA12, RNA},
{ELK3, RNA}, {SSH1, RNA}, C12orf49, RNA, {IPO5, RNA}, {TMCO3, RNA}, {KIAA0586, RNA}, {JKAMP, RNA},
{PCNX, RNA}, {EHD4, RNA}, {CLPX, RNA}, {AAGAB, RNA}, {RCCD1, RNA}, {FAM173A, RNA}, {LINC00921, RNA},
{ZC3H7A, RNA}, {GLG1, RNA}, {MBTPS1, RNA}, {TNFRSF13B, RNA}, {ZNF207, RNA}, {ACLY, RNA}, {PSME3, RNA},
{TEX2, RNA}, {PRKCA, RNA}, {ATP9B, RNA}, {MBP, RNA}, {ADNP2, RNA}, {HOOK2, RNA}, {EMR3, RNA},
{SDHAF1, RNA}, {ZNF529, RNA}, {RPL18, RNA}, {CTU1, RNA}, {GEMIN6, RNA}, {GMCL1, RNA}, {COA5, RNA},
{MRPS9, RNA}, {GTF3C3, RNA}, {NDUFS1, RNA}, {RALGAPA2, RNA}, {LOC284801, RNA}, {SAMHD1, RNA},
{SERINC3, RNA}, {USP25, RNA}, {RUNX1, RNA}, {DSCR3, RNA}, {THAP7, RNA}, {MAPK1, RNA}, {PITPNB, RNA},
{EWSR1, RNA}, {NPTXR, RNA}, {TCF20, RNA}, {ARPC4, RNA}, {STT3B, RNA}, {SNRK-AS1, RNA}, {CCDC12, RNA},
{PRKAR2A, RNA}, {GSK3B, RNA}, {PTPLB, RNA}, {DNAJC13, RNA}, {LRCH3, RNA}, {KLF3, RNA}, {ANTXR2, RNA},
{GPRIN3, RNA}, {INPP4B, RNA}, {PTGER4, RNA}, {NNT, RNA}, {CCDC125, RNA}, {POC5, RNA}, {ERAP1, RNA},
{TBC1D22B, RNA}, {HACE1, RNA}, {SYNJ2, RNA}, {CYTH3, RNA}, {STAG3L1, RNA}, {STAG3L3, RNA},
{MTERF, RNA}, {MBLAC1, RNA}, {TRIM56, RNA}, {AHCYL2, RNA}, {RNF122, RNA}, {ADAM9, RNA}, {PRKDC, RNA},
{AGO2, RNA}, {ERMP1, RNA}, {KDM4C, RNA}, {FOCAD, RNA}, {CEP78, RNA}, {RC3H2, RNA}, {GTF3C4, RNA},
{ZRSR2, RNA}, {PDK3, RNA}, {CASK, RNA}, {DDX3X, RNA}, {TIMP1, RNA}, {ARHGEF6, RNA}, {IDS, RNA}

We may also want to know what these frequencies correspond to. The "LombScargle" method uses a LombScargle transformation.

Printed from the Complete Wolfram Language Documentation 34

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

LombScargle[data, setTimes] calculates the Lomb-Scargle power spectrum for time
series data that runs over specified setTimes. It takes as
input:
 data Time series (data as a list; list

may be the value of a single
key in an association). The
series may include Missing
data points. Data may be
entered as list of N signal
intensities corresponding one-
to-one to the N setTimes with
Missing inserted appropriately
if the data is absent,
{X1=X (t1),

X2=X (t2),...,
XN=X (tN)}

.

Alternatively, the data may be
a list of pairs of values
{{t1,X1},{t2,X2},. ..,{tN,XN}} for
only existing measurements.

 setTimes A complete set of all possible N
times during which data could
have been collected in the
window of the experiment,
including times for which no
data was
collected,
{t1, t2, ..., tN}.

Calculating the power spectrum of a (possibly unevenly sampled) time series.

Printed from the Complete Wolfram Language Documentation 35

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

FrequenciesOnly False Whether to return only the computation
frequencies. An association of frequencies
"f" ordered from low to high by index i is
returned in the form:
<|"f1" → frequency1,

"f2" → frequency2, ...,
"fi" → frequencyi,..., "fn" →

frequencyn|>

NormalizeIntensities False Whether the intensities list should be
normalized or not.

OversamplingRate 1 Rate at which to oversample the time
series using zero-padding.

PairReturn False Whether data should be returned as
{frequency list,intensity list} or as pairs:
{{frequency1,intensity1}, {frequency2,
intensity2},...,{frequencyN,intensityN}.

UpperFrequencyFactor 1 Value ≥ 1, by which to scale the upper
Nyquist cutoff frequency and increase
spectral resolution.

Options for LombScargle .

To obtain the possible frequencies we simply run LombScargle over the desired times for one of the time series and set the FrequenciesOnly option

to True :

In[104]:= LombScarglernaFinalTimeSeries[[1]], timesRNA, FrequenciesOnly → True

Out[104]= f1 → 0.00500668, f2 → 0.0104306, f3 → 0.0158545,
f4 → 0.0212784, f5 → 0.0267023, f6 → 0.0321262, f7 → 0.0375501

Proteomic Data

Importing OmicsObject Proteome Data

We now import the proteomics data example (for details on how to import such data please refer to DataImporter , DataImporterDirect ,

DataImporterDirectLabeled and OmicsObjectCreator documentation).

Printed from the Complete Wolfram Language Documentation 36

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We import the proteomics OmicsObject MathIOmica example:

In[105]:= proteinExample = GetFileNameJoinConstantMathIOmicaExamplesDirectory, "proteinExample"

Out[105]=

7 → {A0AVT1, Protein} → {{0.937}, {17}}, {A0FGR8, Protein} → {{1.073}, {24}},
{A0MZ66, Protein} → {{1.059}, {9}}, ⋯ 5219⋯ , {Q9Y6I4, Protein} → Missing[],
{Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[],

9 →  ⋯ 1⋯ , ⋯ 9⋯ , 20 → ⋯ 1⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

There are multiple samples given by the outer associations. We can use Query to get any data. For example we can get the outer keys:

In[106]:= Query[Keys]@proteinExample

Out[106]= {7, 9, 10, 11, 14, 12, 13, 15, 16, 17, 19, 20, 21}

We notice that sample 8 is missing - this is because it was used as a reference in the proteomics experiment. Point 18 is missing as there was no

sample for that time point. We will address this in the next section.

We can get the expression raw data from any sample and entry. For example, the 14th and 214th entries in sample 12:

In[107]:= Query["12", {14, 22}]@proteinExample

Out[107]= /{A5PLN9, Protein} → {{1.057}, {3}}, {A6NGU5, Protein} → Missing[]0

The keys correspond to UniProt accessions, and have been tagged with a "Protein" label as well. The values of all the keys/IDs correspond to

{{measurements}, {metadata}}, and in this particular example:

{{relative intensity compared to reference}, {number of unique peptides identified for the given protein}}.

The measurement for each protein is a relative intensity, i.e. the ratio of the value for the protein compared to the reference timepoint that has been

chosen as the healthy sample "8", day "255" (in the experiment this was TMT reporter with 126 amu). The last list, the "metadata", in the proteomics

OmicsObject was chosen to be the number of unique peptides identified for the given protein.

Additional Information: Gene Translation

As an aside, let us consider the form of the protein identifiers. MathIOmica can perform basic GeneTranslation going from one kind of identifier to

another, using GetGeneDictionary :

Printed from the Complete Wolfram Language Documentation 37

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

GeneTranslation[inputIDList,
targetIDList,geneDictionary]

uses geneDictionary to convert inputIDList IDs to different
annotations as indicated by targetIDList. It takes for
inputs:
inputIDList List of n IDs (strings) to be

converted in the form
{inputID1,

inputID2, ...,
inputIDn}

targetIDList List of target identifier strings, as
used in the gene
geneDictionary,

{target ID1,
targetID2, ...

target IDk}

, e.g.

{"UniProt ID","Gene Symbol"}.
Can also be provided as a single
string for only one kind of IDs.

geneDictionary Gene dictionary to base
translation on in the form
generated by GetGeneDictionary .

GetGeneDictionary[] creates an ID/accession dictionary from a UCSC table
search - typically of gene annotations. GetGeneDictionary
uses MathIOmica data for the annotations..

Translating gene identifiers using a gene dictionary.

We use GetGeneDictionary to define a gene dictionary:

In[108]:= geneDictionary = GetGeneDictionary[]

Out[108]=

human → UCSC ID → uc001aaa.3, uc010nxr.1, uc010nxq.1, uc001aal.1, uc001aaq.2, uc001aar.2,
uc001aau.3, uc021oeh.1, ⋯ 121567⋯ , uc022cfk.1, uc031tkn.1, uc022cgh.1, uc022cha.1,
uc022chb.1, uc022chc.1, uc022che.1, uc022cpe.1, ⋯ 6⋯ , HGU… x ID → ⋯ 1⋯ 

large output show less show more show all set size limit...

Printed from the Complete Wolfram Language Documentation 38

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

The current version of the gene dictionary has accessions for the following identifiers:

In[109]:= Query[All, Keys]@geneDictionary

Out[109]= human → UCSC ID, UniProt ID, Gene Symbol, RefSeq ID,
NCBI Protein Accession, Ensembl ID, KEGG Gene ID, HGU133Plus2 Affymetrix ID

We can now use GeneTranslation (setting the optional InputID to "UniProt ID") to convert our example "UniProt ID" accessions to "Gene Symbol":

In[110]:= GeneTranslation{"A5PLN9", "A6NGU5"}, {"Gene Symbol"}, geneDictionary, InputID → "UniProt ID"

Out[110]= /Gene Symbol → /A5PLN9 → {TRAPPC13}, A6NGU5 → Missing[]00

We note that an ID might not necessarily be annotated across all databases, as in the above example.

Processing of Proteome Data

We will next preprocess the imported proteome data. We will first perform a transformation on the data towards a normal distribution, then we will

re-label the samples with real time and carry out filtering for unique peptides present in each protein identification, as well as for missing data.

Finally, we will create the proteomics time series or relative intensities compared to the healthy reference point for each protein.

Power Transformation, Labeling and Filtering

Data Power Transformation

To make the data comparable across time points, and as close to a normal distribution as possible for each sample, we normalize each time point

/sample by using ApplyBoxCoxTransform .

ApplyBoxCoxTransform[data] for a given data set, computes the Box-Cox transformation
at the maximum likelihood λ parameter.

Applying a power transformation (Box-Cox) for an optimized parameter for each dataset.

option name default value

ListIndex Missing[] Selection of which list to use in the
OmicsObject input.

ComponentIndex Missing[] Selection of which component of a list to
use in the OmicsObject input.

HorizontalSelection False Horizontal selection across components
for a single level association with multi-list
values.

Options for ApplyBoxCoxTransform .

We apply a Box-Cox transformation to the proteomics data measurement in the OmicsObject, which is in the first list first component for each identifier.

The optimized λ
=

 parameter for each sample is printed out for reference:

In[111]:= transformedProteinData = ApplyBoxCoxTransformproteinExample, ListIndex → 1, ComponentIndex → 1

Printed from the Complete Wolfram Language Documentation 39

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Calculated Box-Cox parameter λ
=

= -0.152638

Calculated Box-Cox parameter λ
=

= -0.177086

Calculated Box-Cox parameter λ
=

= -0.421581

Calculated Box-Cox parameter λ
=

= -0.292287

Calculated Box-Cox parameter λ
=

= -0.432042

Calculated Box-Cox parameter λ
=

= 0.346673

Calculated Box-Cox parameter λ
=

= 0.368061

Calculated Box-Cox parameter λ
=

= 0.0834074

Calculated Box-Cox parameter λ
=

= 0.13413

Calculated Box-Cox parameter λ
=

= 0.166336

Calculated Box-Cox parameter λ
=

= 0.0866284

Calculated Box-Cox parameter λ
=

= -0.199247

Calculated Box-Cox parameter λ
=

= -0.221778

Out[111]=

7 → {A0AVT1, Protein} → {{-0.0653962}, {17.}}, {A0FGR8, Protein} → {{0.0700809}, {24.}},
⋯ 5221⋯ , {Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[],

⋯ 11⋯ , 21 → {A0AVT1, Protein} → - ⋯ 21⋯ , ⋯ 1⋯ , ⋯ 5223⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can plot the data to see what the resulting distributions look like:

In[112]:= Histogram[#] & /@ Query[All, Values, 1, 1]@transformedProteinData

Out[112]= 7 → , 9 → , 10 → ,

11 → , 14 → , 12 → ,

13 → , 15 → , 16 → , 17 → ,

19 → , 20 → , 21 → 

Printed from the Complete Wolfram Language Documentation 40

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Re-labeling Samples with Times

As with the transcriptome, we notice that the sample numberings do not correspond to actual days, so we may adjust using the sampleToDays
association created before and reproduced here for reference:

In[113]:= sampleToDays =
3"7" → "186", "8" → "255", "9" → "289", "10" → "290", "11" → "292", "12" → "294", "13" → "297", "14" → "301",
"15" → "307", "16" → "311", "17" → "322", "18" → "329", "19" → "369", "20" → "380", "21" → "400"4;

We can now do a KeyMap to rename the outer keys:

In[114]:= proteinLongitudinal = KeyMapsampleToDays, transformedProteinData

Out[114]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, {A0MZ66, Protein} → {{0.057075}, {9.}}, ⋯ 5220⋯ ,
{Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[], ⋯ 11⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Now let's check the timepoints in this dataset:

In[115]:= timesProteinRawData = TimeExtractorproteinLongitudinal

Out[115]= {186, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380, 400}

We notice a small complication: there are two timepoints missing, compared to the transcriptome: (i) the reference time point "255" does not appear

explicitly in our computation (corresponding to a zero value about which other timepoints are computed for proteins with at least 2 unique peptides).

(ii) there is no sample for day "329".

We can use the ConstantAssociator function to append these to the transformed data. Timepoints "255" (zero measurement assumed to have at least 2
unique peptides available per protein) and "329", assumed to be Missing data:

In[116]:= proteinLongitudinalEnlarged =
ConstantAssociatorproteinLongitudinal, <|"255" → {{0}, {2}}, "329" → Missing[]|>

Out[116]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, {A0MZ66, Protein} → {{0.057075}, {9.}}, ⋯ 5220⋯ ,
{Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[], ⋯ 13⋯ , 329 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now check the timepoints again:

In[117]:= timesProtein = TimeExtractorproteinLongitudinalEnlarged

Out[117]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

Filter Unique Peptides

Typically, proteomics data from mass spectrometry is filtered to retain only identifications of proteins that are supported by at least 2 unique

peptides having been identified per protein. We can use FilteringFunction to implement the filtering:

Printed from the Complete Wolfram Language Documentation 41

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

FilteringFunction[omicsObject, cutoff] filters OmicsObject data by a chosen comparison (by
default greatr or equal) to a cutoff .

FilteringFunction can be used to filter data in an OmicsObject.

option name default value

ListIndex Missing[] Selection of which list to use in the
OmicsObject input.

ComponentIndex Missing[] Selection of which component of a list to
use in the OmicsObject input.

SelectionFunction GreaterEqual Selection of comparison to use for filtering.

Options for FilteringFunction .

We filter out proteomics data with less than 2 unique peptides per protein. The unique peptides is reported as the second list, first component in the
OmicsObject values in this case:

In[118]:= proteinUnique = FilteringFunctionproteinLongitudinalEnlarged, 2, ListIndex → 2, ComponentIndex → 1

Out[118]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, {A0MZ66, Protein} → {{0.057075}, {9.}}, ⋯ 5220⋯ ,
{Q9Y616, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[], ⋯ 13⋯ , 329 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Filter Data

We will next remove values that have been tagged as Missing[], retaining data that have at least 3/4 data points available across all samples. Here we

use the function FilterMissing :

In[119]:= filteredProteinData = FilterMissingproteinUnique, 3/4

Printed from the Complete Wolfram Language Documentation 42

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

{Missing -> Counts: , /1 → 2475, 5 → 443, 6 → 143, 9 → 499, 10 → 345, 14 → 13200}

1
5
6
9
10
14

Out[119]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, ⋯ 2471⋯ , {Q9Y6W5, Protein} → {{-0.0514946}, {14.}},
{Q9Y6Y8, Protein} → {{-0.026397}, {10.}}, ⋯ 13⋯ , 329 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Create Proteome Time Series

We can now create time series for each of the proteins.

Printed from the Complete Wolfram Language Documentation 43

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

For each protein we now extract a time series (list of values) corresponding to these times:

In[120]:= timeSeriesProtein = CreateTimeSeriesfilteredProteinData

Out[120]=

{A0AVT1, Protein} → -0.0653962, 0, 0.00299471, -0.0348449, -0.0182123, 0.0627073, ⋯ 3⋯ ,
0.0829594, 0.0689856, Missing[], -0.050132, -0.137674, -0.0120888, ⋯ 2473⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Take the Norm and Remove Constant Proteome Time Series

Next, we normalize each protein series, using SeriesApplier :

In[121]:= normedProteinAll = SeriesApplierNormalize, timeSeriesProtein

Out[121]=

{A0AVT1, Protein} → {-0.205122, 0., 0.00939321, -0.109294, -0.0571245, 0.196687, 0.529638,
0.0740093, -0.539241, 0.26021, 0.21638, Missing[], -0.157244, -0.431828, -0.0379175},

⋯ 2473⋯ , {Q9Y6Y8, Protein} → -0.0502772, 0., 0.0961208, 0.0848518, 0.207372,
0.188143, ⋯ 3⋯ , 0.134835, -0.133348, Missing[], -0.185135, 0., -0.369519

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean to remove constant series, as we are interested in changing time patterns:

In[122]:= proteinFinalTimeSeries = ConstantSeriesCleannormedProteinAll

Out[122]=

{A0AVT1, Protein} → {-0.205122, 0., 0.00939321, -0.109294, -0.0571245, 0.196687, 0.529638,
0.0740093, -0.539241, 0.26021, 0.21638, Missing[], -0.157244, -0.431828, -0.0379175},

⋯ 2473⋯ , {Q9Y6Y8, Protein} → -0.0502772, 0., 0.0961208, 0.0848518, 0.207372,
0.188143, ⋯ 3⋯ , 0.134835, -0.133348, Missing[], -0.185135, 0., -0.369519

large output show less show more show all set size limit...

Resampling Proteome Data

In addition to the above, we want to create a resampled distribution for the proteome dataset prior to classification and clustering. In this subsection

we first resample the imported and labeled proteome dataset, Then, we carry out the full analysis in this "bootstrap" dataset, to create a set of

random proteome time series. This bootstrap distribution of time series will be used to provide the cutoffs used in the time series classification in the

following subsection.

Resampling the Proteome Data

We create a resampling of 100000 sets:

Printed from the Complete Wolfram Language Documentation 44

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

In[123]:= proteinBootstrap = BootstrapGeneralproteinExample, 100 000

Out[123]=

7 → 1 → {{1.061}, {1}}, 2 → {{1.053}, {10}}, 3 → Missing[],
4 → {{1.13}, {8}}, 5 → Missing[], 6 → {{0.888}, {1}}, 7 → Missing[], ⋯ 99987⋯ ,
99 995 → {{1.027}, {15}}, 99996 → {{0.926}, {6}}, 99997 → Missing[], 99998 → {{0.993}, {1}},
99 999 → Missing[], 100000 → {{1.325}, {1}}, ⋯ 11⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing the Bootstrap Proteome and Creating Bootstrap Time Series

We apply a Box-Cox transformation to the bootstrap set proteomics data measurement in the OmicsObject, which is in the first list first component for

each identifier. The optimized λ
=

 parameter for each sample is printed out for reference:

In[124]:= transformedProteinBootstrapData = ApplyBoxCoxTransformproteinBootstrap, ListIndex → 1, ComponentIndex → 1

Calculated Box-Cox parameter λ
=

= -0.150171

Calculated Box-Cox parameter λ
=

= -0.222817

Calculated Box-Cox parameter λ
=

= -0.368798

Calculated Box-Cox parameter λ
=

= -0.28793

Calculated Box-Cox parameter λ
=

= -0.47914

Calculated Box-Cox parameter λ
=

= 0.340883

Calculated Box-Cox parameter λ
=

= 0.366836

Calculated Box-Cox parameter λ
=

= 0.0673515

Calculated Box-Cox parameter λ
=

= 0.13962

Calculated Box-Cox parameter λ
=

= 0.156325

Calculated Box-Cox parameter λ
=

= 0.100479

Calculated Box-Cox parameter λ
=

= -0.186707

Calculated Box-Cox parameter λ
=

= -0.215203

Out[124]=

7 → 1 → {{0.0589494}, {1.}}, 2 → {{0.0514435}, {10.}}, 3 → Missing[], 4 → {{0.121103}, {8.}},
5 → Missing[], ⋯ 99991⋯ , 99997 → Missing[], 99998 → {{-0.00702832}, {1.}},
99 999 → Missing[], 100000 → {{0.275549}, {1.}}, ⋯ 11⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now do a KeyMap to rename the outer keys to actual days:

In[125]:= proteinBootstrapLongitudinal = KeyMapsampleToDays, transformedProteinBootstrapData;

Now let's check the timepoints in this dataset:

In[126]:= timesProteinBootstrapData = TimeExtractorproteinBootstrapLongitudinal

Out[126]= {186, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380, 400}

Printed from the Complete Wolfram Language Documentation 45

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

As with the regular protein data above use the ConstantAssociator function to append these to the transformed bootstrap data. Timepoints "255" (zero
measurement assumed to have at least 2 unique peptides available per protein) and "329", assumed to be Missing data:

In[127]:= proteinBootstrapLongitudinalEnlarged =
ConstantAssociatorproteinBootstrapLongitudinal, <|"255" → {{0}, {2}}, "329" → Missing[]|>;

We can now check the timepoints again:

In[128]:= timesProteinBootstrap = TimeExtractorproteinBootstrapLongitudinalEnlarged

Out[128]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

We filter out proteomics bootstrap data with less than 2 unique peptides per protein. The unique peptides is reported as the second list, first component
in the OmicsObject values in this case:

In[129]:= proteinBootstrapUnique =
FilteringFunctionproteinBootstrapLongitudinalEnlarged, 2, ListIndex → 2, ComponentIndex → 1

Out[129]=

186 →

2 → {{0.0514435}, {10.}}, 4 → {{0.121103}, {8.}}, 8 → {{0.0746855}, {4.}}, 9 → {{-0.150168}, {14.}},
⋯ 99992⋯ , 88851 → Missing[], 47564 → Missing[], 39785 → Missing[], 81335 → Missing[],

⋯ 13⋯ , 329 → 2 → Missing[], ⋯ 99998⋯ , 81335 → ⋯ 1⋯ 

large output show less show more show all set size limit...

We will next remove values that have been tagged as Missing[], retaining data that have at least 3/4 data points available across all bootstrap

samples. Here we use the function FilterMissing :

In[130]:= filteredProteinBootstrapData = FilterMissingproteinBootstrapUnique, 3/4

Printed from the Complete Wolfram Language Documentation 46

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

{Missing -> Counts: , /1 → 142, 2 → 1220, 3 → 5012, 4 → 11693, 5 → 18728,
6 → 22396, 7 → 19536, 8 → 12532, 9 → 5943, 10 → 2117, 11 → 573, 12 → 96, 13 → 120}

1
2
3
4
5
6
7
8

9
10
11
12
13

Out[130]=

186 → 10 → {{-0.0440973}, {15.}}, 15 → {{0.0982086}, {2.}},
83 → {{0.260952}, {4.}}, 131 → {{-0.0578792}, {3.}}, ⋯ 6366⋯ ,
88 885 → Missing[], 91871 → Missing[], 92952 → Missing[], 96125 → Missing[],

⋯ 13⋯ , 329 → 10 → ⋯ 1⋯ , ⋯ 6372⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Printed from the Complete Wolfram Language Documentation 47

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

For each bootstrap protein we now extract a time series (list of values):

In[131]:= timeSeriesProteinBootstrap = CreateTimeSeriesfilteredProteinBootstrapData

Out[131]=

 ⋯ 1⋯ 

large output show less show more show all set size limit...

Next, we normalize each protein series, using SeriesApplier :

In[132]:= normedProteinBootstrapAll = SeriesApplierNormalize, timeSeriesProteinBootstrap

Out[132]=

10 → -0.031448, 0., 0.0640716, -0.115008, 0.0203035, -0.0586266, -0.0237844, ⋯ 20⋯ , - ⋯ 19⋯ ,
-0.0629589, -0.17116, Missing[], 0.717319, Missing[], 0.374911, ⋯ 6372⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean to remove constant series, as we are interested in changing time patterns:

In[133]:= proteinBootstrapFinalTimeSeries = ConstantSeriesCleannormedProteinBootstrapAll

Out[133]=

10 → -0.031448, 0., 0.0640716, -0.115008, 0.0203035, -0.0586266, -0.0237844, ⋯ 20⋯ , - ⋯ 19⋯ ,
-0.0629589, -0.17116, Missing[], 0.717319, Missing[], 0.374911, ⋯ 6372⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Classification of Proteome Time Series

In this subsection we will classify the proteome time series based on patterns in the series. For the classification we will use TimeSeriesClassification .

We will use QuantileEstimator for the "LombScargle" method to provide a cutoff for the TimeSeriesClassification inputs.

First, we estimate for the "LombScargle" Method, 0.95 quantile cutoff from the bootstrap proteome data:

In[268]:= q95Protein = QuantileEstimatorproteinBootstrapFinalTimeSeries, timesProteinBootstrap

Out[268]= 0.835064

Next, we estimate the "Spikes" 0.95 quantile cutoff from the bootstrap proteome data:

In[270]:= q95ProteinSpikes =
QuantileEstimatorproteinBootstrapFinalTimeSeries, timesProteinBootstrap, Method → "Spikes"

Out[270]= /12 → {0.804265, -0.838055}, 13 → {0.802793, -0.81749}, 14 → {0.787772, -0.821609}0

Printed from the Complete Wolfram Language Documentation 48

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Now we can classify the proteome time series data based on these cutoffs:

In[271]:= proteinClassification = TimeSeriesClassificationproteinFinalTimeSeries,
timesProtein, LombScargleCutoff → q95Protein, SpikeCutoffs → q95ProteinSpikes

Method → "LombScargle"

Out[271]=

 ⋯ 1⋯ 

large output show less show more show all set size limit...

As discussed above, the default output for TimeSeriesClassification is an Association with outer keys being the classification classes, inner keys

being the class members, and each class member value being a list of {{computed classification vector}, {input data list}}.

If we want the classes produced, we can query the keys:

In[137]:= KeysproteinClassification

Out[137]= SpikeMax, SpikeMin, f1, f5, f6, f7

For the number of members in each class we have:

In[272]:= Query[All, Length]@proteinClassification

Out[272]= SpikeMax → 124, SpikeMin → 48, f1 → 77, f5 → 7, f6 → 36, f7 → 18

We can obtain the membership list in any class of interest:

In[273]:= Query"f1", Keys@proteinClassification

Out[273]= {{O00160, Protein}, {O00267, Protein}, {O00273, Protein}, {O00571, Protein},
{O15031, Protein}, {O43143, Protein}, {O43175, Protein}, {O43312, Protein},
{O43516, Protein}, {O60271, Protein}, {O60879, Protein}, {O75643, Protein},
{O75792, Protein}, {O95498, Protein}, {P00488, Protein}, {P00915, Protein}, {P02042, Protein},
{P02671, Protein}, {P04844, Protein}, {P08174, Protein}, {P09326, Protein}, {P09496, Protein},
{P11021, Protein}, {P12956, Protein}, {P13501, Protein}, {P13611, Protein}, {P13667, Protein},
{P19387, Protein}, {P23141, Protein}, {P23368, Protein}, {P32119, Protein}, {P32189, Protein},
{P33176, Protein}, {P40306, Protein}, {P42892, Protein}, {P50225, Protein}, {P51531, Protein},
{P52888, Protein}, {P54920, Protein}, {P55036, Protein}, {P60660, Protein}, {P84095, Protein},
{Q01518, Protein}, {Q07021, Protein}, {Q08722, Protein}, {Q09666, Protein}, {Q13151, Protein},
{Q13217, Protein}, {Q13488, Protein}, {Q14165, Protein}, {Q14643, Protein}, {Q14653, Protein},
{Q15084, Protein}, {Q5H9R7, Protein}, {Q6NYC8, Protein}, {Q709C8, Protein}, {Q86YP4, Protein},
{Q92499, Protein}, {Q96AT9, Protein}, {Q96L92, Protein}, {Q96RT1, Protein}, {Q99439, Protein},
{Q9BTE3, Protein}, {Q9BTV4, Protein}, {Q9BWS9, Protein}, {Q9C0I1, Protein}, {Q9H0D6, Protein},
{Q9H2U2, Protein}, {Q9H444, Protein}, {Q9H4Z3, Protein}, {Q9NS69, Protein}, {Q9NUP9, Protein},
{Q9NVJ2, Protein}, {Q9NYB0, Protein}, {Q9UQ35, Protein}, {Q9Y277, Protein}, {Q9Y2Q0, Protein}}

To obtain the possible frequencies we simply run LombScargle over the desired times for one of the time series and set the FrequenciesOnly option

to True :

In[140]:= LombScargleproteinFinalTimeSeries[[1]], timesRNA, FrequenciesOnly → True

Out[140]= f1 → 0.00500668, f2 → 0.0104306, f3 → 0.0158545,
f4 → 0.0212784, f5 → 0.0267023, f6 → 0.0321262, f7 → 0.0375501

Printed from the Complete Wolfram Language Documentation 49

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Metabolomic Data

Importing OmicsObject Metabolome Data

We now import the metabolomics data example (for details on how to import such data please refer to DataImporter , DataImporterDirect ,

DataImporterDirectLabeled and OmicsObjectCreator documentation).

We import the metabolomics OmicsObject MathIOmica examples for each of positive and negative mass spectrometry aligned mass features:

In[141]:= metabolitesNegativeModeExample =
GetFileNameJoinConstantMathIOmicaExamplesDirectory, "metabolomicsNegativeModeExample"

Out[141]=

8 → {457.002, 0.34764, Meta} →

{23444, 16317, 1},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 2289⋯ , {421.948, 0.392875, Meta} → {1, 115528, 130 042},
 [C11 H12 Cl2 O11 S, db=0.00, overall=48.58, mfg=97.17], , ⋯ 10⋯ , 20 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

In[142]:= metabolitesPositiveModeExample =
GetFileNameJoinConstantMathIOmicaExamplesDirectory, "metabolomicsPositiveModeExample"

Out[142]=

8 → {202.033, 0.332607, Meta} → {{263741, 276 622, 337241}, {, }},
{174.038, 0.334514, Meta} → {{78435, 88529, 121073}, {, }},
⋯ 3670⋯ , {422.34, 14.7601, Meta} → {{1, 36919, 102 737}, {, }},

9 →  ⋯ 1⋯ , ⋯ 8⋯ , 19 →  ⋯ 1⋯ , 20 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

There are multiple samples given by the outer associations. We can use Query to get any data. For example we can get the outer keys:

In[143]:= Query[Keys]@metabolitesNegativeModeExample

Out[143]= {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20}

In[144]:= Query[Keys]@metabolitesPositiveModeExample

Out[144]= {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20}

We notice that sample 7, 18 and 21 are missing as there was no sample for these time points. This will be addressed further below.

We can get the intensity data from any sample and entry. For example, the 77th and 155th entries in sample 14:

In[145]:= Query["14", {77, 155}]@metabolitesNegativeModeExample

Out[145]= {322.089, 0.440241, Meta} →

{31 950, 29801, 27440}, Isosorbide-2-glucuronide [C12 H18 O10, db=60.03, overall=60.67, mfg=61.31,
KEGG ID=, CAS ID=29542-01-6], 29542-01-6, {146.059, 0.742692, Meta} → {62667, 1, 60382},

Adipic acid [C6 H10 O4, db=45.74, overall=46.59, mfg=47.44, KEGG ID=, CAS ID=124-04-9], 124-04-9

The outer keys correspond to the identified features in the form {mass to charge ratio (m/z), retention time, "Meta"}, i.e. each m/z and retention time

has been tagged with a "Meta" label as well to indicate these are metabolomics data. The values of all the keys/IDs correspond to

{{measurements}, {metadata}}, and in this particular example:

{{intensity technical replicate 1, intensity technical replicate 2, intensity technical replicate 3},
{Annotations, CAS Number}}

.

Printed from the Complete Wolfram Language Documentation 50

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

The outer keys correspond to the identified features in the form {mass to charge ratio (m/z), retention time, "Meta"}, i.e. each m/z and retention time

has been tagged with a "Meta" label as well to indicate these are metabolomics data. The values of all the keys/IDs correspond to

{{measurements}, {metadata}}, and in this particular example:

{{intensity technical replicate 1, intensity technical replicate 2, intensity technical replicate 3},
{Annotations, CAS Number}}

.

We would like to combine the positive and negative mode metabolomics data. We will use EnlargeInnerAssociation :

In[146]:= metabolitesExample =
EnlargeInnerAssociationmetabolitesNegativeModeExample, metabolitesPositiveModeExample

Out[146]=

8 → {457.002, 0.34764, Meta} →

{23444, 16317, 1},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{1, 36919, 102 737}, {, }}, ⋯ 10⋯ ,

20 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing of Metabolome Data

We will next preprocess the imported metabolome data. We will first perform calculate the median of the technical replicates, transform the data

towards a normal distribution, then we will re-label the samples with real time and carry out filtering for missing data. Finally, we will create the

metabolomics time series or relative intensities compared to the healthy reference point for each mass feature identified.

Medians of Technical Triplicates, Data Transformation, Labeling, Filtering, Matching Mass

Median of Technical Triplicates

The metabolomics intensities have three measurements, corresponding to technical triplicates. Typically we would like to use the median of these

values. An additional complication is that some of the triplicates have intensity values of 1, which should be taken as a Missing value. We can use

MeasurementApplier to perform the calculation:

MeasurementApplier[function,omicsObject] applies a function to the measurement list of an
omicsObject, ignoring missing values.

Applying a function to the measurements in an OmicsObject.

Printed from the Complete Wolfram Language Documentation 51

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

ComponentIndex All ComponentIndex is an option for

MathIOmica functions, such as Applier ,
that allows selection of which component
of a list to use in an association or
OmicsObject input or output values.

IgnorePattern _Missing IgnorePattern is an option for
MeasurementApplier specifying a
pattern of values to delete prior to
applying the function to the measurement
list.

ListIndex 1 ListIndex is an option for MathIOmica

functions, such as Applier that allows
selection of which list to use in the
association or OmicsObject input or output
values.

Options for MeasurementApplier .

We implement a Median calculation, and ignoring entries with missing and values of 1:

In[147]:= metaboliteMedians = MeasurementApplierMedian, metabolitesExample, IgnorePattern → _Missing 1 1.

Out[147]=

8 →

{457.002, 0.34764, Meta} → {19880.5},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{69828.}, {, }}, ⋯ 10⋯ ,

20 → {457.002, 0.34764, Meta} → {16606.5},  ⋯ 1⋯ , ⋯ 5962⋯ ,  ⋯ 1⋯  → ⋯ 1⋯ 

large output show less show more show all set size limit...

Data Power Transformation

We apply a Box-Cox transformation to the metabolite median data in the OmicsObject, which is now the first list first component for each identifier. The

optimized λ
=

 parameter for each sample is printed out for reference:

In[148]:= transformedMetaboliteData = ApplyBoxCoxTransformmetaboliteMedians, ListIndex → 1, ComponentIndex → 1

Printed from the Complete Wolfram Language Documentation 52

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Calculated Box-Cox parameter λ
=

= -0.288857

Calculated Box-Cox parameter λ
=

= -0.282374

Calculated Box-Cox parameter λ
=

= -0.276202

Calculated Box-Cox parameter λ
=

= -0.262075

Calculated Box-Cox parameter λ
=

= -0.271308

Calculated Box-Cox parameter λ
=

= -0.27703

Calculated Box-Cox parameter λ
=

= -0.295395

Calculated Box-Cox parameter λ
=

= -0.264833

Calculated Box-Cox parameter λ
=

= -0.278556

Calculated Box-Cox parameter λ
=

= -0.269513

Calculated Box-Cox parameter λ
=

= -0.265784

Calculated Box-Cox parameter λ
=

= -0.262769

Out[148]=

8 →

{457.002, 0.34764, Meta} → {3.26345},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{3.32386}, {, }},

⋯ 10⋯ , 20 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can plot the data to see what the resulting distributions look like:

In[149]:= Histogram[#] & /@ Query[All, Values, 1, 1]@transformedMetaboliteData

Out[149]= 8 → , 9 → , 10 → , 11 → ,

12 → , 13 → , 14 → , 15 → ,

16 → , 17 → , 19 → , 20 → 

Printed from the Complete Wolfram Language Documentation 53

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We may also wish to standardize the distributions:

In[150]:= metabolitesStandardized =
ReturnertransformedMetaboliteData, ApplierStandardizeExtended#, Mean, StandardDeviation &,

transformedMetaboliteData, ListIndex → 1, ComponentIndex → 1, ListIndex → 1, ComponentIndex → 1

Out[150]=

8 →

{457.002, 0.34764, Meta} → {-1.71178},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{-0.247328}, {, }},

⋯ 10⋯ , 20 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can again plot the data to see what the standardized distributions look like:

In[151]:= Histogram[#] & /@ Query[All, Values, 1, 1]@metabolitesStandardized

Out[151]=

Re-labeling Samples with Times

As with the transcriptome, we notice that the sample numberings do not correspond to actual days, so we may adjust using the sampleToDays

association created above:

In[152]:= sampleToDays =
3"7" → "186", "8" → "255", "9" → "289", "10" → "290", "11" → "292", "12" → "294", "13" → "297", "14" → "301",
"15" → "307", "16" → "311", "17" → "322", "18" → "329", "19" → "369", "20" → "380", "21" → "400"4;

Printed from the Complete Wolfram Language Documentation 54

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can now do a KeyMap to rename the outer keys:

In[153]:= metabolitesLongitudinal = KeyMapsampleToDays, metabolitesStandardized

Out[153]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{-0.247328}, {, }},

⋯ 10⋯ , 380 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 5963⋯ 

large output show less show more show all set size limit...

Now let's check the timepoints in this dataset:

In[154]:= timesMetaboliteRawData = TimeExtractormetabolitesLongitudinal

Out[154]= {255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380}

We notice a complication: there are three timepoints missing, corresponding to the three samples for which we had indicated above that there were

no measurements (compared to the transcriptome samples). These are samples on days "186", "329" and "400".

We can use the ConstantAssociator function to append these to the transformed data, tagging these data as Missing data:

In[155]:= metabolitesLongitudinalEnlarged =
ConstantAssociatormetabolitesLongitudinal, <|"186" → Missing[], "329" → Missing[], "400" → Missing[]|>

Out[155]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{-0.247328}, {, }},

⋯ 13⋯ , 400 → {457.002, 0.34764, Meta} → ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now check the timepoints again:

In[156]:= timesMetabolites = TimeExtractormetabolitesLongitudinalEnlarged

Out[156]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

Filter Data

We will next remove values that have been tagged overall as Missing[], retaining data that have at least 3/4 data points available across all samples.

Additionally we remove data where the reference healthy sample "255" was missing. We use the function FilterMissing for this implementation:

In[157]:= filteredMetaboliteData = FilterMissingmetabolitesLongitudinalEnlarged, 3/4, Reference → "255"

Printed from the Complete Wolfram Language Documentation 55

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

{Missing -> Counts: , /3 → 4601, 4 → 1158, 5 → 172, 6 → 31, 7 → 20}

3
4
5
6
7

Out[157]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 4599⋯ , {406.381, 14.5609, Meta} →
{{-1.34842}, {2,4,6-trimethyl-2,15… ipid ID=, KEGG ID=], }}, ⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Matching Unique Mass

We may want to match a unique mass to the metabolites. This is a putative mass identification based on the uniqueness of the mass feature. If

matched, a KEGG compound identity can be prepended to the identifier using OmicsObjectUniqueMassConverter .

Printed from the Complete Wolfram Language Documentation 56

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

OmicsObjectUniqueMassConverter[
omicsObject, massAccuracy]

assigns a unique putative mass identification to each of
omicsObject's inner association keys, using the
massAccuracy in parts per million.

Matching putative mass identifications to mass features in an OmicsObject of metabolites.

We match our identities to KEGG compound identifiers, using a 2ppm accuracy (this may take some time depending on the number of matching data):

In[158]:= massMatchedFilteredMetabolites = OmicsObjectUniqueMassConverterfilteredMetaboliteData, 2

Out[159]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11], ,
⋯ 4599⋯ , {406.381, 14.5609, Meta} → {{-1.34842}, {2,4,6-trimethyl-2,… id ID=, KEGG ID=], }},

⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Create Metabolome Time Series

We can now create time series for each of the proteins.

For each metabolite feature we now extract a time series (list of values) corresponding to the set of times:

In[160]:= timeSeriesMetabolites = CreateTimeSeriesmassMatchedFilteredMetabolites

Out[160]=
 ⋯ 1⋯ 

large output show less show more show all set size limit...

Take Difference Compared to Reference in Metabolome Time Series.

Now we need to compare to compare the difference of each intensity for a given metabolite's time series to the intensity of the ratios of expression at

any time point compared to a healthy datapoint. We can use the function SeriesInternalCompare :

We compare every value in each series to the healthy "255" time point, which is the second element in each series:

In[161]:= metabolitesCompared = SeriesInternalComparetimeSeriesMetabolites, ComparisonIndex → 2

Out[161]=

{457.002, 0.34764, Meta} → Missing[], 0., -0.326659, -0.244843, 0.0307746, -0.112847, ⋯ 3⋯ ,
-0.640794, -0.165613, Missing[], -0.340455, -0.143904, Missing[], ⋯ 4599⋯ ,  ⋯ 1⋯  → ⋯ 1⋯ 

large output show less show more show all set size limit...

Printed from the Complete Wolfram Language Documentation 57

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Take the Norm and Remove Constant Metabolome Time Series

Next, we normalize each series, using again SeriesApplier :

In[274]:= normedMetabolitesCompared = SeriesApplierNormalize, metabolitesCompared

Out[274]=

{457.002, 0.34764, Meta} → Missing[], 0., -0.343784, -0.25768, 0.032388, -0.118763,
⋯ 3⋯ , -0.674389, -0.174295, Missing[], -0.358304, -0.151448, Missing[], ⋯ 4600⋯ 

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean to remove constant series, as we are interested in changing time patterns:

In[275]:= metabolomeFinalTimeSeries = ConstantSeriesCleannormedMetabolitesCompared

Out[275]=

{457.002, 0.34764, Meta} → Missing[], 0., -0.343784, -0.25768, 0.032388, -0.118763,
⋯ 3⋯ , -0.674389, -0.174295, Missing[], -0.358304, -0.151448, Missing[], ⋯ 4600⋯ 

large output show less show more show all set size limit...

Resampling Metabolome Data

We also would like to create a resampled distribution for the metabolome dataset prior to classification and clustering. In this subsection we first

resample the imported metabolome dataset. Then, we carry out the full analysis in this "bootstrap" dataset, to create a set of random metabolome

time series. This bootstrap distribution of time series will be used to provide the cutoffs used in the time series classification in the following

subsection.

Resampling the Proteome Data

We create a resampling of 100000 sets:

In[164]:= metabolitesBootstrap = BootstrapGeneralmetabolitesExample, 100 000

Out[164]=

8 → 1 → {88478, 100725, 59680},
2-pentadecenoic acid [C15 H28 O2, db=82.32, overall=82.52, mfg=46.15, Lipid ID=, KEGG ID=],
, ⋯ 99 998⋯ ,

100000 → {{44327, 153862, 33442}, {5alpha-Cholan-24-oic Acid… .87, Lipid ID=, KEGG ID=], }},
⋯ 10⋯ , 20 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing the Bootstrap Metabolome and Creating Bootstrap Time Series

We implement a Median calculation, and ignoring entries with missing and values of 1 for the bootstrap set:

In[165]:= metaboliteBootstrapMedians =
MeasurementApplierMedian, metabolitesBootstrap, IgnorePattern → _Missing 1 1.;

We apply a Box-Cox transformation to the bootstrap metabolite median data in the OmicsObject, which is now the first list first component for each

identifier. The optimized λ
=

 parameter for each sample is printed out for reference:

In[166]:= transformedBootstrapMetaboliteData =
ApplyBoxCoxTransformmetaboliteBootstrapMedians, ListIndex → 1, ComponentIndex → 1

Printed from the Complete Wolfram Language Documentation 58

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Calculated Box-Cox parameter λ
=

= -0.287152

Calculated Box-Cox parameter λ
=

= -0.280376

Calculated Box-Cox parameter λ
=

= -0.276347

Calculated Box-Cox parameter λ
=

= -0.260243

Calculated Box-Cox parameter λ
=

= -0.270257

Calculated Box-Cox parameter λ
=

= -0.273974

Calculated Box-Cox parameter λ
=

= -0.294708

Calculated Box-Cox parameter λ
=

= -0.265066

Calculated Box-Cox parameter λ
=

= -0.280128

Calculated Box-Cox parameter λ
=

= -0.269042

Calculated Box-Cox parameter λ
=

= -0.265108

Calculated Box-Cox parameter λ
=

= -0.262923

Out[166]=

8 → 1 → {3.35022},
2-pentadecenoic acid [C15 H28 O2, db=82.32, overall=82.52, mfg=46.15, Lipid ID=, KEGG ID=],
, 2 →  ⋯ 1⋯ , ⋯ 99 996⋯ , 99999 → ⋯ 1⋯ , 100 000 →

{{3.32119}, {5alpha-Cholan-24-oic Acid [… 96.87, Lipid ID=, KEGG ID=], }}, ⋯ 10⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We may also wish to standardize the distributions:

In[167]:= metabolitesBootstrapStandardized = ReturnertransformedBootstrapMetaboliteData,
ApplierStandardizeExtended#, Mean, StandardDeviation &, transformedBootstrapMetaboliteData,
ListIndex → 1, ComponentIndex → 1, ListIndex → 1, ComponentIndex → 1

Out[167]=

8 → 1 → {-0.0237496},
2-pentadecenoic acid [C15 H28 O2, db=82.32, overall=82.52, mfg=46.15, Lipid ID=, KEGG ID=],
, 2 →  ⋯ 1⋯ , ⋯ 99 996⋯ , 99999 → ⋯ 1⋯ , 100 000 →

{{-0.714262}, {5alpha-Cholan-24-oic Acid … .87, Lipid ID=, KEGG ID=], }}, ⋯ 10⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now do a KeyMap to rename the outer keys with labels corresponding to days:

In[168]:= metabolitesBootstrapLongitudinal = KeyMapsampleToDays, metabolitesBootstrapStandardized;

Now let's check the timepoints in this dataset:

In[169]:= timesMetaboliteBootstrapData = TimeExtractormetabolitesBootstrapLongitudinal

Out[169]= {255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380}

We can use the ConstantAssociator function to append the "186", "329" and "400" missing days to the transformed bootstrap data:

In[170]:= metabolitesBootstrapLongitudinalEnlarged = ConstantAssociator
metabolitesBootstrapLongitudinal, <|"186" → Missing[], "329" → Missing[], "400" → Missing[]|>;

Printed from the Complete Wolfram Language Documentation 59

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can now check the timepoints again:

In[171]:= timesMetabolitesBootstrap = TimeExtractormetabolitesBootstrapLongitudinalEnlarged

Out[171]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

We next remove values that have been tagged overall as Missing[], retaining data that have at least 3/4 data points available across all samples.

Additionally we remove data where the reference healthy sample "255" was missing. We use the function FilterMissing for this implementation:

In[172]:= filteredMetaboliteBootstrapData =
FilterMissingmetabolitesBootstrapLongitudinalEnlarged, 3/4, Reference → "255";

{Missing -> Counts: , /3 → 75579, 4 → 21924, 5 → 2352, 6 → 142, 7 → 30}

3
4
5
6
7

For each bootstrap metabolite feature we now extract a time series (list of values) corresponding to the set of times:

In[173]:= timeSeriesMetabolitesBootstrap = CreateTimeSeriesfilteredMetaboliteBootstrapData;

Printed from the Complete Wolfram Language Documentation 60

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We compare every value in each bootstrap series to the healthy "255" time point, which is the second element in each series:

In[174]:= metabolitesBootstrapCompared = SeriesInternalComparetimeSeriesMetabolitesBootstrap, ComparisonIndex → 2;

Next, we normalize each series, using again SeriesApplier :

In[175]:= normedMetabolitesBootstrapCompared = SeriesApplierNormalize, metabolitesBootstrapCompared;

Finally, we use ConstantSeriesClean to remove constant series, as we are interested in changing time patterns:

In[176]:= metabolomeBootstrapFinalTimeSeries = ConstantSeriesCleannormedMetabolitesBootstrapCompared;

Classification of Metabolome Time Series

In this subsection we will classify the metabolome time series based on patterns in the series. For the classification we will use

TimeSeriesClassification . We will use QuantileEstimator for the "LombScargle" method to provide a cutoff for the TimeSeriesClassification inputs.

First, we estimate for the "LombScargle" Method, 0.95 quantile cutoff from the bootstrap metabolome data:

In[276]:= q95Metabolites = QuantileEstimatormetabolomeBootstrapFinalTimeSeries, timesMetabolitesBootstrap

Out[276]= 0.846125

Next, we estimate the "Spikes" 0.95 quantile cutoff from the bootstrap proteome data:

In[277]:= q95MetabolitesSpikes =
QuantileEstimatormetabolomeBootstrapFinalTimeSeries, timesMetabolitesBootstrap, Method → "Spikes"

Out[277]= /12 → {0.67052, -0.651833}0

Now we can classify the proteome time series data based on these cutoffs:

In[278]:= metaboliteClassification = TimeSeriesClassificationmetabolomeFinalTimeSeries,
timesMetabolites, LombScargleCutoff → q95Metabolites, SpikeCutoffs → q95MetabolitesSpikes

Method → "LombScargle"

Out[278]=

SpikeMax →

{1514.1, 0.366235, Meta} → {0.150094, 0.150759, 0.336515, 0.197558, 0.430385, 0.667846, 0.41379},
Missing[], 0., ⋯ 12⋯ , Missing[], ⋯ 134⋯ ,  ⋯ 1⋯  → ⋯ 1⋯ , ⋯ 6⋯ 

large output show less show more show all set size limit...

As discussed above, the default output for TimeSeriesClassification is an Association with outer keys being the classification classes, inner keys being

the class members, and each class member value being a list of {{computed classification vector}, {input data list}}.

If we want the classes produced, we can query the keys:

In[180]:= KeysmetaboliteClassification

Out[180]= SpikeMax, SpikeMin, f1, f2, f5, f6, f7

For the number of members in each class we have:

In[279]:= Query[All, Length]@metaboliteClassification

Out[279]= SpikeMax → 136, SpikeMin → 713, f1 → 63, f2 → 38, f5 → 43, f6 → 15, f7 → 33

Printed from the Complete Wolfram Language Documentation 61

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can obtain the membership list in any class of interest:

In[280]:= Query"f1", Keys@metaboliteClassification

Out[280]= {{373.859, 0.411324, Meta}, {cpd:C11821, 184.024, 0.653444, Meta}, {221.109, 10.3062, Meta},
{cpd:C18218, 272.235, 12.7737, Meta}, {294.166, 13.0495, Meta}, {631.385, 13.5221, Meta},
{563.32, 13.7008, Meta}, {779.604, 13.9622, Meta}, {362.266, 14.001, Meta},
{cpd:C17873, 384.36, 14.2982, Meta}, {390.297, 14.3592, Meta}, {420.361, 14.6658, Meta},
{434.376, 14.7796, Meta}, {392.366, 15.0173, Meta}, {394.381, 15.1519, Meta}, {1599.15, 15.281, Meta},
{693.628, 15.6921, Meta}, {874.715, 15.9118, Meta}, {281.986, 0.390455, Meta}, {504.309, 14.3911, Meta},
{416.313, 14.4627, Meta}, {735.521, 15.1792, Meta}, {571.961, 0.388167, Meta}, {489.958, 0.388912, Meta},
{325.95, 0.392472, Meta}, {465.913, 0.393056, Meta}, {383.909, 0.397722, Meta}, {301.906, 0.407861, Meta},
{219.903, 0.412111, Meta}, {161.944, 0.413086, Meta}, {139.061, 0.458472, Meta},
{115.064, 0.463972, Meta}, {71.074, 0.482559, Meta}, {253.165, 9.12729, Meta}, {298.132, 9.30967, Meta},
{cpd:C20605, 411.179, 9.3167, Meta}, {440.201, 11.2909, Meta}, {355.218, 12.7443, Meta},
{338.244, 12.8545, Meta}, {1061.15, 13.0612, Meta}, {210.198, 13.1613, Meta}, {501.367, 13.296, Meta},
{594.375, 13.3701, Meta}, {1538.03, 13.3796, Meta}, {404.314, 13.6028, Meta}, {692.323, 13.7652, Meta},
{670.265, 13.8732, Meta}, {814.584, 14.1513, Meta}, {366.349, 14.3015, Meta}, {442.402, 14.3568, Meta},
{406.381, 14.3581, Meta}, {278.152, 14.364, Meta}, {cpd:C19658, 344.271, 14.4331, Meta},
{420.358, 14.4446, Meta}, {311.319, 14.6119, Meta}, {791.583, 15.4236, Meta}, {1553.18, 15.4429, Meta},
{1545.17, 15.5017, Meta}, {352.052, 0.53368, Meta}, {cpd:C17237, 254.073, 12.2926, Meta},
{336.228, 12.5103, Meta}, {638.402, 13.4139, Meta}, {668.324, 13.988, Meta}}

To obtain the possible frequencies we simply run LombScargle over the desired times for one of the time series and set the FrequenciesOnly option

to True :

In[183]:= LombScarglemetabolomeFinalTimeSeries[[1]], timesMetabolites, FrequenciesOnly → True

Out[183]= f1 → 0.00500668, f2 → 0.0104306, f3 → 0.0158545,
f4 → 0.0212784, f5 → 0.0267023, f6 → 0.0321262, f7 → 0.0375501

Combined Data Clustering
In this section we will combine the omics data classes from the individual classifications above using JoinNestedAssociations and hierarchically

cluster the information to obtain a second level of classification using TimeSeriesClusters . We will visualize the results in the following section.

Combining Multi-omics Classified Data

JoinNestedAssociations[associationList] merges the nested associationList (an association of
associations) by joining the inner associations for each
matching key.

Joining classification data.

Printed from the Complete Wolfram Language Documentation 62

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We combine the classification data using JoinNestedAssociations :

In[281]:= combinedClassification =
JoinNestedAssociationsrnaClassification, proteinClassification, metaboliteClassification 

Out[281]=

SpikeMax → {ATAD3C, RNA} → {0.0855374, 0.204135, 0.219303, 0.378496, 0.5849, 0.346012, 0.545735},
0., 0., 0., 0., ⋯ 7⋯ , 0., 0., 0.075919, 0., ⋯ 1081⋯ , ⋯ 7⋯ , f7 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We can check the keys before and after the combination:

In[282]:= Keys[#] & /@ rnaClassification, proteinClassification, metaboliteClassification 

Out[282]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7,
SpikeMax, SpikeMin, f1, f5, f6, f7, SpikeMax, SpikeMin, f1, f2, f5, f6, f7

In[283]:= Keys@combinedClassification

Out[283]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7

We can also check the membership counts before and after the combination:

In[284]:= Query[All, Length]@# & /@ rnaClassification, proteinClassification, metaboliteClassification 

Out[284]= SpikeMax → 822, SpikeMin → 5963, f1 → 116, f2 → 3, f3 → 30, f4 → 128, f5 → 35, f6 → 13, f7 → 61,
SpikeMax → 124, SpikeMin → 48, f1 → 77, f5 → 7, f6 → 36, f7 → 18,
SpikeMax → 136, SpikeMin → 713, f1 → 63, f2 → 38, f5 → 43, f6 → 15, f7 → 33

In[285]:= Query[All, Length]@combinedClassification

Out[285]= SpikeMax → 1082, SpikeMin → 6724, f1 → 256, f2 → 41, f3 → 30, f4 → 128, f5 → 85, f6 → 64, f7 → 112

Clustering of Classified Data

Now that we have combined the classes for the various omics, we can cluster them together to obtain the various trends using TimeSeriesClusters . A

two-tier hierarchical clustering of the data is performed, using a set of two classification vectors,

{{classification vector1}, {classification vector2}} for each time series to cluster the data pairwise. The vectors are typically

the output from TimeSeriesClassification . Similarities at each clustering tier are then computed using in succession from each time series first

{classification vector1}, and subsequently {classification vector2} (which corresponds to the {input data time series} if

the input is from TimeSeriesClassification).

The number of groups and subgroups for each tier of clustering is automatically determined by using internally the "Silhouette" (default) or "Gap" as

"SignificanceTest" methods (see also Partitioning Data into Clusters).

Printed from the Complete Wolfram Language Documentation 63

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

TimeSeriesClusters[data] performs clustering of time series data using two tiers of
hierarchical clustering to identify groups and subgroups in
the data. TimeSeriesClusters takes as input series data,
where each data is comprised of two lists and performs
clustering of the data to identify groups and subgroups
based on similarities between the input series. The form of
the input data is either an association of classes and
members, where each member must have a list of two
components, typically two vectors used in classification:
{{classification vector1},

{classification vector2}}
.

In the most common case of using as input data that came
from performing a TimeSeriesClassification, the
{classification vector2} will correspond to input
original data for the corresponding time series.

Clustering of classified time series.

Printed from the Complete Wolfram Language Documentation 64

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

ClusterLabeling "" Additional label to append to each cluster
being computed to prepend to the inbuilt
G#S# labeling.

DendrogramPlotOptions {} Options passed to the DendrogramPlot
function used internally to generate the
dendrograms.

DistanceFunction EuclideanDistance Distance function to be used in calculating the similarities between
different time series in the first tier of clustering.

LinkageMeasure "Average" Which linkage measure to use in
computing fusion coefficients.

PrintDendrograms False Option to print dendrograms for the
clustering computed.

ReturnDendrograms False Option to return the dendrograms as
output.

SignificanceCriterion "Silhouette" Method used in determining the number of
groups and subgroups at each tier of
clustering.

SingleAssociationLabel "1" Label to use in case a list is provided to
name the class of data produced.

SubclusteringDistanceFunction EuclideanDistance Distance function to be used in calculating the similarities between
different time series in the second tier of clustering.

Options for TimeSeriesClusters .

The output of TimeSeriesClusters is always an association of associations, providing a summary of the two tier clustering results for each class

provided in the input. The output has the form:

output =
<| Class1 → <|"Cluster" → cluster object1,

"InitialSplitCluster" → {InitialSplitCluster11, InitialSplitCluster12 ...},
"IntermediateClusters" → {IntermediateCluster11, IntermediateCluster12 ...},
"SubsplitClusters" → {{SubsplitClusters11} {SubsplitClusters12}},
"Data" → {{input data vector11} → Member11, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

Class2 → <|"Cluster" → cluster object2,
"InitialSplitCluster" → {InitialSplitCluster21, InitialSplitCluster22 ...},
"IntermediateClusters" → {IntermediateCluster21, IntermediateCluster22 ...},
"SubsplitClusters" → {{SubsplitClusters21} {SubsplitClusters22}},
"Data" → {{input data vector21} → Member21, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

...,
ClassM → <|"Cluster" → cluster objectM,

"InitialSplitCluster" → {InitialSplitClusterM1, InitialSplitClusterM2 ...},
"IntermediateClusters" → {IntermediateCluster M1, IntermediateClusterM2 ...},
"SubsplitClusters" → {{subsplitClustersM1} {subsplitClustersM2}},
"Data" → {{input data vectorM1} → MemberM1, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>

|>

Printed from the Complete Wolfram Language Documentation 65

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

output =
<| Class1 → <|"Cluster" → cluster object1,

"InitialSplitCluster" → {InitialSplitCluster11, InitialSplitCluster12 ...},
"IntermediateClusters" → {IntermediateCluster11, IntermediateCluster12 ...},
"SubsplitClusters" → {{SubsplitClusters11} {SubsplitClusters12}},
"Data" → {{input data vector11} → Member11, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

Class2 → <|"Cluster" → cluster object2,
"InitialSplitCluster" → {InitialSplitCluster21, InitialSplitCluster22 ...},
"IntermediateClusters" → {IntermediateCluster21, IntermediateCluster22 ...},
"SubsplitClusters" → {{SubsplitClusters21} {SubsplitClusters22}},
"Data" → {{input data vector21} → Member21, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

...,
ClassM → <|"Cluster" → cluster objectM,

"InitialSplitCluster" → {InitialSplitClusterM1, InitialSplitClusterM2 ...},
"IntermediateClusters" → {IntermediateCluster M1, IntermediateClusterM2 ...},
"SubsplitClusters" → {{subsplitClustersM1} {subsplitClustersM2}},
"Data" → {{input data vectorM1} → MemberM1, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>

|>

Printed from the Complete Wolfram Language Documentation 66

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Method Description

"Cluster" Cluster generated using the input
{classification vector1} for similarity
calculations.

"InitialSplitCluster" Clusters resulting from splitting the initial cluster
(reported by key "Cluster") into groups using the
SignificanceCriterion to determine the number of clusters.

"IntermediateClusters" Aglomerative clustering result of hierarchical clustering of
each of the initial split clusters (reported by
"InitialSplitCluster")

"SubsplitClusters" Custers generated from splitting the clusters following the
second tier clustering (reported by
"IntermediateClusters") into subgroups using the
SignificanceCriterion to determine the number of clusters.

"Data" Data reported in the order of clustering results as rules of
{classification vector2}→ label for each time
series, sorted in order of the clustering results.

"GroupAssociations" Association denoting membership of each initial data
label to groups and subgroups generated by the two tier
clustering.

Output keys for TimeSeriesClusters provide clustering information.

We now cluster our combined data (a printout of the clusters is included as a default option):

In[286]:= combinedClusters = TimeSeriesClusterscombinedClassification

Out[286]=

SpikeMax →  ⋯ 1⋯ , SpikeMin →  ⋯ 1⋯ , ⋯ 5⋯ , f6 → ⋯ 1⋯ ,
f7 → Cluster → Cluster ⋯ 1⋯ , ⋯ 4⋯ , GroupAssociations → G1S1 → {MIR6723, RNA}, {ZNF324, RNA},

{CBX6, RNA}, ⋯ 106⋯ , {O60884, Protein}, {RTFDC1, RNA}, {246.121, 0.940379, Meta}

large output show less show more show all set size limit...

Visualization
After our data have been clustered, we would like to visualise the results in heatmaps and dendrograms. For the two-tier clustering we have per-

formed MathIOmica can output all the clusterings in labeled dendrograms and heatmaps using TimeSeriesDendrogramsHeatmaps , which iteratively

calls TimeSeriesDendrogramHeatmap on each class.

Printed from the Complete Wolfram Language Documentation 67

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

TimeSeriesDendrogramsHeatmaps[data] generates dendrograms and associated heatmap plots for
clustered time series data, typically the output of all
classes generated by implementing TimeSeriesClusters .

TimeSeriesDendrogramHeatmap[data] generates a dendrogram and heatmap plot for one set of
time series data clusters, typically the output of a single
class of TimeSeriesClusters .

Visualizing the results of classification.

option name default value

FunctionOptions ImageSize -> 200 Options list passed to the internal
TimeSeriesDendrogramHeatmap function.

Options for TimeSeriesDendrogramsHeatmaps .

Printed from the Complete Wolfram Language Documentation 68

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

option name default value

ColorBlending {CMYKColor[1,
0, 1, 0],

CMYKColor[0,
1, 1, 0]}

Color scheme for the plot. The color list is
passed to an internal Blend function to
create a ColorFunction for an internal
ArrayPlot function.

DendrogramColor RGBColor[1, 1, 0] Color to highlight the dendrograms.

FrameName "Dendrogram
and Heatmap"

Label for plot frame.

GroupSubSize {0.1, 0.1} Relative size of group and subgroup
reference column in plot.

HorizontalAxisName "Time (arbitrary
units)"

Label for the horizontal heatmap axis.

HorizontalLabels None Labels for horizontal axis for each column.

IndexColor "DeepSeaColors" Choice of color for labeling the
group/subgroup index.

ImageSize 200 ImageSize is an option that specifies the
overall size of an image to display for an
object.

ScaleShift None Option to reset the blend of the colors
used overall. The option is a real positive
number, and is used as a multiplier for an
internal Blend function's second argument.

VerticalLabels None Labels for vertical axis for each row.

Options for TimeSeriesDendrogramHeatmap .

For each class a separate plot is generated: dendrograms are represented on the left, and are highlighted to represent the grouping level. The G, S,
columns represent the groupings and subgroupings generated by the clustering. The legend shows the corresponding groupings and subgrouping, and
the number of elements in each group subgroup.

In[287]:= TimeSeriesDendrogramsHeatmapscombinedClusters

Out[287]=

Printed from the Complete Wolfram Language Documentation 69

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Out[287]=

Printed from the Complete Wolfram Language Documentation 70

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Out[287]=

Printed from the Complete Wolfram Language Documentation 71

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Out[287]=

Annotation and Enrichment
Having carried out the classification and clustering of data base on its temporal pattern, we would like to perform annotation of these data for gene

ontology (GO) and pathways from KEGG: Kyoto Encyclopedia of Genes and Genomes.

Gene Ontology Analysis

MathIOmica provides a GOAnalysis function using annotations (default is for human data) obtained from the Gene Ontology consortium, and by

default uses human data annotated with UniProt IDs. The GOAnalysis function performs an over-representation (ORA) analysis, providing a

"significance" cutoff based on a p-value assessed by a hypergeometric function.

Printed from the Complete Wolfram Language Documentation 72

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

GOAnalysis[data] calculates input data over-representation analysis (ORA)
for Gene Ontology (GO) categories. We note that the
function utilizes ontologies obtained from the GO
Consortium, and by default uses human data annotated
with UniProt IDs.

Performing an over representation analysis for Gene Ontology (GO) terms, using clustered data in MathIOmica.

option name default value

AdditionalFilter None AdditionalFilter provides additional
filtering that may be applied to the
standard output structure to be returned.

AugmentDictionary True AugmentDictionary provides a choice
whether or not to augment the current
ConstantGeneDictionary variable or create
a new one.

BackgroundSet All BackgroundSet provides a list of IDs (e.g.
gene accessions) that should be
considered as the background for the
calculation.

FilterSignificant True FilterSignificant can be set to True to filter
data based on whether the enrichment
analysis is statistically significant, or if set
to False to return all membership
computations.

GeneDictionary None GeneDictionary points to an existing
variable to use as a gene dictionary in
annotations. If set to None the default
ConstantGeneDictionary will be used.

GetGeneDictionaryOptions {} The GetGeneDictionaryOptions option
specifies a list of options that will be
passed to the internal GetGeneDictionary
function.

GOAnalysisAssignerOptions {} The GOAnalysisAssignerOptions option
specifies a list of options that will be
passed to the internal GOAnalysisAssigner
function.

Printed from the Complete Wolfram Language Documentation 73

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

The GOAnalysisAssignerOptions option
specifies a list of options that will be
passed to the internal GOAnalysisAssigner
function.

HypothesisFunction (Query["Results"][
BenjaminiHo-

chbergFDR[
#1,
Significa-
nceLevel
->
#2]] &)

The HypothesisFunction option allows us
to chose a function to implement multiple
hypothesis testing. The default is using
the BenjaminiHochbergFDR function.
The user can use any function f with three
inputs, of the form f[#1,#2,#3] where the
inputs refer to:
#1 is the p-value list,
#2 is a significance cutoff,
#3 is the number of GO associations
overall being tested.
The function f must output a list of 3
values: {original p-value, adjusted p-
value, True or False based on whether this
value is considered statistically significant
or not respectively}.

InputID {"UniProt ID",
"Gene Symbol"}

The InputID option specifies the kind of
identifiers/accessions used as input.

MultipleList False MultipleList option specifies whether the
input accessions list constituted a multi-
omics list input that is annotated so. If this
is the case, MultipleList is set to True and
each input list ID should have the form
{ID,"Omics Type Label"}, e.g.
{"NFKB1","Protein"}, and the different
omics type are treated as different for each
ID. If MultipleList is set to False, and
labeled IDs are provided, labels
corresponding to the same ID are treated
as equivalent to avoid overcounting.

MultipleListCorrection None MultipleListCorrection is an option
whether or not to correct for multi-omics
analysis. The choices are None, Automatic,
or a custom number. This essentially
enlarges the population by this factor to
account for additional IDs being
considered as the result of a multi-omics
cluster analysis. If the value is set to
Automatic the number of unique ID labels
is used to make the correction.

Printed from the Complete Wolfram Language Documentation 74

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

MultipleListCorrection is an option
whether or not to correct for multi-omics
analysis. The choices are None, Automatic,
or a custom number. This essentially
enlarges the population by this factor to
account for additional IDs being
considered as the result of a multi-omics
cluster analysis. If the value is set to
Automatic the number of unique ID labels
is used to make the correction.

OBOGODictionaryOptions {} OBOGODictionaryOptions specifies a list of
options to be passed to the internal
OBOGODictionary function that provides
the GO annotations.

OBODictionaryVariable None OBODictionaryVariable can provide a GO
annotation variable. If set to None,
OBOGODictionary will be used internally to
automatically generate the default GO
annotation.

OntologyLengthFilter 2 OntologyLengthFilter can be used to set
the value for which terms to consider in the
computation, by excluding GO terms that
have fewer items compared to the
OntologyLengthFilter value. It is used by
the internal GOAnalysisAssigner function.

OutputID "UniProt ID" The OutputID option takes a string value
that specifies what kind of IDs/accessions
to convert the input IDs to compute the GO
enrichment.

pValueCutoff 0.05 pValueCutoff provides a cutoff p-value for
adjusted p-values to assess statistical
significance.

ReportFilter 1 ReportFilter provides a cutoff for
membership in ontologies in selecting
which terms/categories to return. It is used
in conjunction with ReportFilterFunction.

ReportFilterFunction GreaterEqualThan ReportFilterFunction specifies what
operator form will be used to compare
against ReportFilter option value in
selecting which terms/categories to return.
The default is to use GreaterEqualThan.

Species "human" The Species option specifies the species
considered in the calculation.

Printed from the Complete Wolfram Language Documentation 75

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

TestFunction (1 -N[CDF[
Hypergeom-
etricDist-
ribution[
#1, #2,
#3], #4 -
1]])&

The TestFunction option provides a
function used to calculate the p-values for
the enrichment of each term. It can be a
function of four inputs, f[#1,#2,#3,#4]
(e.g. the default is using a hypergeometric
distribution CDF, 1-
N[CDF[HypergeometricDistribution[#1,#2,
#3],#4-1]]]. The four inputs refer to:
#1 is number of draws (members in group
being tested),
#2 is number of successes for category in
population,
#3 is total number of members in
population,
#4 is number of successes (or more) in
current group being tested for specific
category.
The output is a p-value (real positive
number ≤ 1).

Options for GOAnalysis .

The input data for GOAnalysis be a single list of n genes in the form:

data = {ID1, ID2, ..., IDn}

The IDs may be provided as ID strings, or as labeled strings in the case of multiple omics being considered. Labeled IDs are provided as

{{ID1, label1}, {ID2, label2}, ... {ID3, label2}}. The labels are typically a string, e.g. typically "RNA" or "Protein".

The default output contains each GO:term that was considered and found to be statistically significant. For each GO term we schematically have an

association with keys GO : Term → {{testing outcomes}, {statistics}, {{GO term}, {Membership}}. The output has the following

structures: for a single list input:

listOutput = <|
GO : Term1 → {{p - value1, multiple hypothesis adjusted p - value1, True/False for statistical significance},

{{number of members in group being tested, number of successes for term1 in population, total number of
members in population, number of members (or more) in current group being tested associated to term1},

{{GO term1 description, ontology category for term1}, {input IDs associated to Term1}}}},
GO : Term2 → {{p - value2, multiple hypothesis adjusted p - value2, True/False for statistical significance},

{{number of members in group being tested, number of successes for term2 in population, total number of
members in population, number of members (or more) in current group being tested associated to term2},

{{GO term2 description, ontology category for term2}, {input IDs associated to Term2}}}}, ...,
GO : Termn → {{p - valuen, multiple hypothesis adjusted p - valuen, True/False for statistical significance},

{{number of members in group being tested, number of successes for termn in population, total number of
members in population, number of members (or more) in current group being tested associated to termn},

{{GO termn description, ontology category for termn}, {input IDs associated to termn}}}}
|>

GOAnalysis can also take as input the output of clustering of time series classification data, e.g. TimeSeriesClusters or TimeSeriesSingleClusters

association of associations. The groups for each class will then have keys labeled "GroupAssociations", that include the labels used in the

clustering. The labels must correspond to protein or gene accessions/IDs. For each class and group the corresponding GOAnalysis enrichment is

computed and returned.

Printed from the Complete Wolfram Language Documentation 76

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

GOAnalysis can also take as input the output of clustering of time series classification data, e.g. TimeSeriesClusters or TimeSeriesSingleClusters

association of associations. The groups for each class will then have keys labeled "GroupAssociations", that include the labels used in the

clustering. The labels must correspond to protein or gene accessions/IDs. For each class and group the corresponding GOAnalysis enrichment is

computed and returned.

We also note that GOAnalysis provides a multiple-hypothesis adjusted p-value. By default, it utilizes a Benjamini-Hochberg false discovery rate (FDR)

using BenjaminiHochbergFDR .

BenjaminiHochbergFDR[pValues] calculates for a list of pValues, {p1, p2, ... pN}, the
Benjamini Hochberg approach false discovery rates (FDR).

Calculating a false discovery rate (FDR).

We carry out our GOAnalysis for all the classes and groups/subgroups. We only report terms for which there are at least 3 members, and additionally
correct for multiple omics (2 sets of GO terms, one each for proteomics and transcriptomics). Please note that this is a time consuming computation.

In[288]:= goAnalysisCombined = GOAnalysiscombinedClusters, OntologyLengthFilter → 3,
ReportFilter → 3, MultipleList → True, MultipleListCorrection → 2 ;

We see that the classification is maintained:

In[289]:= Keys@goAnalysisCombined

Out[289]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7

Let us extract the top 3 results from all the "SpikeMax" data:

In[290]:= Query"SpikeMax", All, 1 ;; 3@goAnalysisCombined

Out[290]= G1S1 → GO:0005739 →

7.01352×10-9, 0.0000110673, True, {243, 2480, 39544, 41}, {mitochondrion, cellular_component},
{{ATAD3C, RNA}}, {{PDP2, RNA}}, {{IBA57, RNA}}, {{KIAA1683, RNA}}, {{GK5, RNA}},
{{SPATA5, RNA}}, {{PPARGC1B, RNA}}, {{GDAP1, RNA}}, CXorf23, RNA, {{Q9NSE4, Protein}},
{{O75323, Protein}}, {{P06576, Protein}}, {{SYNJ2BP, RNA}}, {{P10809, Protein}},
{{Q99798, Protein}}, {{P38646, Protein}}, {{Q9H9B4, Protein}}, {{P55084, Protein}},
{{Q9NUJ1, Protein}}, {{P49411, Protein}}, {{P13804, Protein}}, {{P17568, Protein}},
{{P22033, Protein}}, {{Q16822, Protein}}, {{P83111, Protein}},
{{O95571, Protein}}, {{Q8N4H5, Protein}}, {{O96008, Protein}}, {{P10515, Protein}},
{{Q96I99, Protein}}, {{P42126, Protein}}, {{P51970, Protein}}, {{P22695, Protein}},
{{P40939, Protein}}, {{O75947, Protein}}, {{Q02218, Protein}}, {{P22307, Protein}},
{{P10606, Protein}}, {{FOXO3, RNA}}, {{O75489, Protein}}, {{P28288, Protein}},

GO:0005759 → 1.56806×10-7, 0.00012372, True, {243, 728, 39544, 19},
{{mitochondrial matrix, cellular_component}, {{{MMAA, RNA}}, {{PDP2, RNA}}, {{IBA57, RNA}},

{{Q9NSE4, Protein}}, {{P06576, Protein}}, {{P10809, Protein}}, {{Q99798, Protein}},
{{P38646, Protein}}, {{Q9NUJ1, Protein}}, {{P13804, Protein}}, {{P22033, Protein}},
{{Q16822, Protein}}, {{O95571, Protein}}, {{P10515, Protein}}, {{Q96I99, Protein}},
{{P42126, Protein}}, {{Q02218, Protein}}, {{FOXO3, RNA}}, {{O75489, Protein}}}},

GO:0005814 → {{0.0000689172, 0.0362505, True}, {243, 282, 39544, 9},
{{centriole, cellular_component}, {{{AHI1, RNA}}, {{KIAA1731, RNA}}, {{SASS6, RNA}}, {{SCLT1, RNA}},

{{CEP128, RNA}}, {{CEP152, RNA}}, {{CCDC146, RNA}}, {{CNTLN, RNA}}, {{CEP135, RNA}}}}},

G1S2 → /0, G1S3 → /0, G1S4 → /0, G1S5 → GO:0005515 → 6.39794×10-10, 5.74535×10-7, True,

{76, 19258, 39544, 63}, protein binding, molecular_function,
{{{P60900, Protein}}, {{P13612, Protein}}, {{Q8IUZ5, Protein}}, {{Q9Y285, Protein}},
{{P13861, Protein}}, {{O94979, Protein}}, {{O14933, Protein}}, {{Q9Y6Y8, Protein}},
{{Q7L2H7, Protein}}, {{P01732, Protein}}, {{Q13439, Protein}}, {{Q15819, Protein}},
{{P19784, Protein}}, {{O14745, Protein}}, {{Q07812, Protein}}, {{Q86UP2, Protein}},
{{Q8N1G4, Protein}}, {{Q01082, Protein}}, {{Q9UEU0, Protein}}, {{Q8N8A2, Protein}},
{{Q13043, Protein}}, {{O14732, Protein}}, {{Q7Z4H3, Protein}}, {{O60826, Protein}},
{{Q9UBE0, Protein}}, {{P30520, Protein}}, {{P54136, Protein}}, {{Q13596, Protein}},
{{P25098, Protein}}, {{P41227, Protein}}, {{Q9HC16, Protein}}, {{P61457, Protein}},
{{Q9Y3L3, Protein}}, {{Q92888, Protein}}, {{P62263, Protein}}, {{P85037, Protein}},
{{O00487, Protein}}, {{P54725, Protein}}, {{Q2TAY7, Protein}}, {{P52756, Protein}},

, , , ,

Printed from the Complete Wolfram Language Documentation 77

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Out[290]=

{{O00487, Protein}}, {{P54725, Protein}}, {{Q2TAY7, Protein}}, {{P52756, Protein}},
{{O94776, Protein}}, {{Q13148, Protein}}, {{P06127, Protein}}, {{Q02818, Protein}},
{{P19474, Protein}}, {{P07766, Protein}}, {{Q9Y333, Protein}}, {{ZNF624, RNA}}, {{BLM, RNA}},
{{ZNF772, RNA}}, {{P25788, Protein}}, {{P35998, Protein}}, {{Q9Y3D0, Protein}}, {{O43813, Protein}},
{{Q9Y2V2, Protein}}, {{Q13347, Protein}}, {{Q5JSL3, Protein}}, {{BRMS1L, RNA}}, {{O60841, Protein}},
{{O75534, Protein}}, {{O95218, Protein}}, {{O43402, Protein}}, {{Q99623, Protein}}},

GO:0005829 → 2.03819×10-9, 9.15148×10-7, True, {76, 10070, 39544, 44},
{{cytosol, cellular_component}, {{{P60900, Protein}}, {{O43252, Protein}}, {{Q9Y285, Protein}},

{{P13861, Protein}}, {{O94979, Protein}}, {{O14933, Protein}}, {{Q9Y6Y8, Protein}},
{{Q7L2H7, Protein}}, {{Q13439, Protein}}, {{P19784, Protein}}, {{Q07812, Protein}},
{{P56192, Protein}}, {{Q01082, Protein}}, {{Q9UEU0, Protein}}, {{Q13043, Protein}},
{{O14732, Protein}}, {{O60826, Protein}}, {{P30520, Protein}}, {{P55263, Protein}},
{{P54136, Protein}}, {{Q13596, Protein}}, {{P25098, Protein}}, {{P41227, Protein}},
{{Q9HC16, Protein}}, {{P61457, Protein}}, {{Q9Y3L3, Protein}}, {{Q92888, Protein}},
{{P62263, Protein}}, {{P63220, Protein}}, {{O00487, Protein}}, {{P54725, Protein}},
{{P19474, Protein}}, {{Q9Y333, Protein}}, {{BLM, RNA}}, {{PLEKHA8, RNA}}, {{P25788, Protein}},
{{P35998, Protein}}, {{Q9Y3D0, Protein}}, {{Q9Y2V2, Protein}}, {{Q13347, Protein}},
{{Q5JSL3, Protein}}, {{O60841, Protein}}, {{O75534, Protein}}, {{O43402, Protein}}}},

GO:0003723 → 1.85224×10-7, 0.0000554438, True, {76, 2774, 39544, 20},
RNA binding, molecular_function,
{{{P60900, Protein}}, {{Q9BSD7, Protein}}, {{Q9Y285, Protein}}, {{Q9Y6Y8, Protein}},
{{Q86UP2, Protein}}, {{Q8N1G4, Protein}}, {{Q01082, Protein}}, {{P55263, Protein}},
{{Q9HC16, Protein}}, {{Q92888, Protein}}, {{P62263, Protein}}, {{P63220, Protein}},
{{P52756, Protein}}, {{Q13148, Protein}}, {{O43818, Protein}}, {{P19474, Protein}},
{{Q9Y333, Protein}}, {{O60841, Protein}}, {{O75534, Protein}}, {{O95218, Protein}}},

G1S6 → /0, G1S7 → /0, G1S8 → /0, G1S9 → /0,
G1S10 →
/0,

G1S11 →
/0,

G1S12 →
GO:0051301 →

6.93189×10-9, 0.000012311, True, {167, 690, 39544, 17}, {{cell division, biological_process},
{{{CDCA3, RNA}}, {{CDT1, RNA}}, {{CCNB2, RNA}}, {{AURKA, RNA}}, {{BUB1, RNA}}, {{CDK1, RNA}},
{{CDC20, RNA}}, {{HMGA2, RNA}}, {{BIRC5, RNA}}, {{CDCA5, RNA}}, {{FSD1, RNA}}, {{TPX2, RNA}},
{{FAM64A, RNA}}, {{CCNB1, RNA}}, {{USP44, RNA}}, {{UBE2C, RNA}}, {{TIPIN, RNA}}}},

GO:0062023 → 4.73395×10-7, 0.000420375, True, {167, 720, 39544, 15},
{{collagen-containing extracellular matrix, cellular_component},
{{{CXCL12, RNA}}, {{GPC2, RNA}}, {{FBLN1, RNA}}, {{SFRP1, RNA}}, {{GPC3, RNA}},
{{PXDN, RNA}}, {{GPC4, RNA}}, {{COL26A1, RNA}}, {{COL4A2, RNA}}, {{CDH2, RNA}},
{{MFAP2, RNA}}, {{RARRES2, RNA}}, {{SFRP2, RNA}}, {{APOE, RNA}}, {{MDK, RNA}}}},

GO:0005876 → 7.57217×10-7, 0.000448272, True, {167, 74, 39544, 6},
{{spindle microtubule, cellular_component}, {{{PLK1, RNA}}, {{AURKA, RNA}}, {{CDK1, RNA}},

{{AURKB, RNA}}, {{BIRC5, RNA}}, {{NUSAP1, RNA}}}}, G1S13 → /0, G1S14 → /0

Let us extract the names of the top 10 ontology group results from all the "f1" Group1 subgroup 1 data (G1S1). These are in the 3rd list, first component

for GOAnalysis outputs (see above and documentation:

In[291]:= Query"f1", "G1S1", All, 3, 1@goAnalysisCombined

Out[291]= GO:0016020 → {membrane, cellular_component}, GO:0005515 → protein binding, molecular_function,
GO:0043312 → {neutrophil degranulation, biological_process},
GO:0070062 → {extracellular exosome, cellular_component},
GO:0010501 → {RNA secondary structure unwinding, biological_process},
GO:0035196 → production of miRNAs involved in gene silencing by miRNA, biological_process,
GO:0006986 → response to unfolded protein, biological_process,
GO:0051787 → misfolded protein binding, molecular_function,
GO:0005783 → {endoplasmic reticulum, cellular_component},
GO:0005925 → focal adhesion, cellular_component,
GO:0035198 → miRNA binding, molecular_function, GO:0005739 → {mitochondrion, cellular_component},
GO:0009986 → cell surface, cellular_component, GO:0005524 → ATP binding, molecular_function

Printed from the Complete Wolfram Language Documentation 78

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Let us extract the corresponding p-values/test results of the top 10 ontology group results from all the "SpikeMin" Group1 subgroup 1 data (G1S1). These

are in the 1st list for GOAnalysis outputs (see above and documentation:

In[292]:= Query"f1", "G1S1", All, 1@goAnalysisCombined

Out[292]= GO:0016020 → 1.21194×10-8, 0.0000156583, True, GO:0005515 → 2.67501×10-6, 0.00172805, True,

GO:0043312 → 4.3445×10-6, 0.00186057, True, GO:0070062 → 5.76028×10-6, 0.00186057, True,
GO:0010501 → {0.0000127142, 0.00328536, True}, GO:0035196 → {0.0000895042, 0.0192732, True},
GO:0006986 → {0.000207549, 0.0368334, True}, GO:0051787 → {0.000465227, 0.0422394, True},
GO:0005783 → {0.000606134, 0.0422394, True}, GO:0005925 → {0.000623223, 0.0422394, True},
GO:0035198 → {0.000708397, 0.0422394, True}, GO:0005739 → {0.000751939, 0.0422394, True},
GO:0009986 → {0.000808238, 0.0435101, True}, GO:0005524 → {0.000939921, 0.047844, True}

Pathway Analysis

Enrichment of Genomic KEGG Pathways (KEGG: Kyoto Encyclopedia of Genes and Genomes)

MathIOmica provides a KEGGAnalysis function using annotations (default is for human data) obtained from KEGG: Kyoto Encyclopedia of Genes and

Genomes, and by default uses human data annotated with KEGG Gene IDs. The KEGGAnalysis function performs an over-representation (ORA)

analysis, providing a "significance" cutoff based on a p-value assessed by a hypergeometric function.

KEGGAnalysis[data] calculates input data over-representation analysis for
KEGG: Kyoto Encyclopedia of Genes and Genomes
pathways. We note that the function utilizes data obtained
from the KEGG databases, and by default uses human
data annotated by "KEGG Gene ID".

Performing an over representation analysis for KEGG:Kyoto Encyclopedia of Genes and Genomes pathways, using clustered data in MathIOmica.

option name default value

AdditionalFilter None AdditionalFilter provides additional
filtering that may be applied to the
standard output structure to be returned.

AnalysisType "Genomic" AnalysisType provides a selection for the
type of analysis to perform. "Genomic"
analysis (default) uses gene identifier
based analysis. "Molecular" analysis uses
molecular analysis. Setting the option to
All carries out all possible analysis types
for the input data.

AugmentDictionary True AugmentDictionary provides a choice
whether or not to augment the current
ConstantGeneDictionary variable or create
a new one.

Printed from the Complete Wolfram Language Documentation 79

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

AugmentDictionary provides a choice
whether or not to augment the current
ConstantGeneDictionary variable or create
a new one.

BacgroundSet All BackgroundSet provides a list of IDs (e.g.
gene accessions) that should be
considered as the background for the
calculation.

FilterSignificant True FilterSignificant can be set to True to filter
data based on whether the enrichment
analysis is statistically significant, or if set
to False to return all membership
computations.

GeneDictionary None GeneDictionary points to an existing
variable to use as a gene dictionary in
annotations. If set to None the default
ConstantGeneDictionary will be used.

GetGeneDictionaryOptions {} The GetGeneDictionaryOptions option
specifies a list of options that will be
passed to the internal GetGeneDictionary
function.

HypothesisFunction (Query["Results"][
Benjamini-
HochbergF-
DR[
#1,
Significa-
nceLevel
->
#2]] &) &

The HypothesisFunction option allows us
to chose a function to implement multiple
hypothesis testing. The default is using
the BenjaminiHochbergFDR function.
The user can use any function f with three
inputs, of the form f[#1,#2,#3] where the
inputs refer to:
#1 is the p-value list,
#2 is a significance cutoff,
#3 is the number of GO associations
overall being tested.
The function f must output a list of 3
values: {original p-value, adjusted p-
value, True or False based on whether this
value is considered statistically significant
or not respectively}.

InputID {"UniProt ID",
"Gene Symbol"}

The InputID option specifies the kind of
identifiers/accessions used as input.

KEGGAnalysisAssignerOptions {} The KEGGAnalysisAssignerOptions option
specifies a list of options that will be
passed to the internal
KEGGAnalysisAssigner function.

Printed from the Complete Wolfram Language Documentation 80

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

The KEGGAnalysisAssignerOptions option
specifies a list of options that will be
passed to the internal
KEGGAnalysisAssigner function.

KEGGDatabase "pathway" KEGGDatabase value indicates which KEGG
database to use as the target database.

KEGGDictionaryOptions {} KEGGDictionaryOptions specifies a list of
options to be passed to the internal
KEGGDictionary function that provides the
KEGG annotations.

KEGGDictionaryVariable None KEGGDictionaryVariable can provide a
KEGG annotation variable. If set to None,
KEGGDictionary will be used internally to
automatically generate the default KEGG
annotation.

KEGGMolecular "cpd" KEGGMolecular specifies which database
to use for molecular analysis. The default is
the compound database ("cpd").

KEGGOrganism "hsa" KEGGOrganism indicates which organism
(org) to use for "Genomic" type of analysis.
The default is human analysis org="hsa".

MathIOmicaDataDirectory ConstantMathIOmica-
DataDirectory

MathIOmicaDataDirectory option specifies
the directory where the default
MathIOmica package data are stored. By
default the option is set to create the
standard directory if it does not exist
already.

MolecularInputID {"cpd"} MolecularInputID is a string list to indicate
the kind of ID to use for the input molecule
entries.

MolecularOutputID "cpd" MolecularOutputID is a string to indicate
the kind of ID to convert input molecule
entries. The default is "cpd" consistently
with use of the "cpd" database as the
default molecular analysis.

MolecularSpecies "compound" MolecularSpecies specifies the kind of
molecular input.

Printed from the Complete Wolfram Language Documentation 81

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

MultipleList False MultipleList option specifies whether the
input accessions list constituted a multi-
omics list input that is annotated so. Each
ID j input must be a list form, i.e. enclosed
as {IDj}. If this is the case, MultipleList is
set to True and each input list ID should
have the form {ID,"Omics Type Label"}, e.g.
{"NFKB1","Protein"}, and the different
omics type are treated as different for each
ID. If MultipleList is set to False, and
labeled IDs are provided, labels
corresponding to the same ID are treated
as equivalent to avoid overcounting.

MultipleListCorrection None MultipleListCorrection is an option
whether or not to correct for multi-omics
analysis. The choices are None, Automatic,
or a custom number. This essentially
enlarges the population by this factor to
account for additional IDs being
considered as the result of a multi-omics
cluster analysis. If the value is set to
Automatic the number of unique ID labels
is used to make the correction.

NonUCSC False NonUCSC option set to False assumes
UCSC browser was used in determining an
internal GeneDictionary used in ID
translations where the KEGG identifiers for
genes are number strings (e.g. 4790).
The NonUCSC option can be set to True if
standard KEGG accessions are used in a
user provided GeneDictionary variable, in
the form OptionValue[KEGGOrganism]
<>":"<>"number string", e.g. "hsa:4790"

OutputID "KEGG Gene ID" OutputID is a string to indicate the kind of
ID to convert input genomic analysis
entries. The default is "KEGG Gene ID"
consistently with use of the "pathway"
database as the default genomic analysis.

Printed from the Complete Wolfram Language Documentation 82

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

OutputID is a string to indicate the kind of
ID to convert input genomic analysis
entries. The default is "KEGG Gene ID"
consistently with use of the "pathway"
database as the default genomic analysis.

PathwayLengthFilter 2 PathwayLengthFilter can be used to set the
value for which terms to consider in the
computation, by excluding KEGG pathways
that have fewer items compared to the
PathwayLengthFilter value. It is used by
the internal KEGGAnalysisAssigner
function.

pValueCutoff 0.05 pValueCutoff provides a cutoff p-value for
adjusted p-values to assess statistical
significance.

ReportFilter 1 ReportFilter provides a cutoff for
membership in pathways in selecting
which terms/pathways to return. It is used
in conjunction with ReportFilterFunction.

ReportFilterFunction GreaterEqualThan ReportFilterFunction specifies what
operator form will be used to compare
against ReportFilter option value in
selecting which terms/pathways to return.
The default is to use GreaterEqualThan

Species "human" The Species option specifies the species
considered in the calculation.

TestFunction (1 -N CDF[
Hypergeom-
etricDist-
ribution[
#1, #2,
#3], #4 -
1]])&

The TestFunction option calculates the p-
values for the enrichment of each term. It
can be a function of four inputs,
f[#1,#2,#3,#4] (e.g. the default is using a
hypergeometric distribution CDF, 1-
N[CDF[HypergeometricDistribution[#1,#2,
#3],#4-1]]]. The four inputs refer to:
#1 is number of draws (members in group
being tested),
#2 is number of successes for category in
population,
#3 is total number of members in
population,
#4 is number of successes (or more) in
current group being tested for specific
category.
The output is a p-value (real positive
number ≤ 1).

Options for KEGGAnalysis .

Printed from the Complete Wolfram Language Documentation 83

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Options for KEGGAnalysis .

The input data can be a single list of n genes in the form:

data = {ID1, ID2, ..., IDn}

The IDs may be provided as ID strings, IDj (e.g. "NFKB1") as strings enclosed in list brackets {IDj}, (e.g. {"NFKB1"} or as labeled strings in the case

of multiple omics being considered. Labeled IDs are typically provided as:

{{ID1, ... optional label items1, label1},
{ID2, ... optional label items2, ..., label2}, ... {IDn, ..., optional label itemsn, ..., labeln}}.

The ID labels are typically a string, e.g. typically "RNA" or "Protein", (e.g. {"NFKB1","Protein"}) or for a molecular ID obtained from metabolomics

experiments, can also contain other optional label items such as mass and retention time {"cpd:C00449", 276.133, 11.0041, "Meta"}.

The main label must always be the last element in the list.

The output has the following structures: for a single list input:

listOutput = <|KEGG : pathway1 →
{{p - value1, multiple hypothesis adjusted p - value1, True/False for statistical significance},
{{number of members in group being tested, number of successes for term1 in population,

total number of members in population, number of members (or more) in current group being tested
associated to pathway1}, {KEGG pathway1 description, {input IDs associated to pathway1}}}},

KEGG : pathway2 → {{p - value2, multiple hypothesis adjusted p - value2,
True/False for statistical significance}, {{number of members in group being tested,
number of successes for term2 in population, total number of members in population,
number of members (or more) in current group being tested associated to pathway2},

{KEGG pathway1 description, {input IDs associated to pathway2}}}}, ..., KEGG : pathwayn →
{{p - valuen, multiple hypothesis adjusted p - valuen, True/False for statistical significance},
{{number of members in group being tested, number of successes for termn in population,

total number of members in population, number of members (or more) in current group being tested
associated to pathwayn}, {KEGG pathwayn description, {input IDs associated to pathwayn}}}}

|>

The input data can also be an association of multiple L groups to be tested:

data = <|Group1 → ID11, ID12, ..., ID1 n1,
Group2 → {ID21, ID22, ..., ID2 n2}, ...,
GroupL → ID11, ID12, ..., ID1 nL|>.

In this case the output for each group has the listOutput format described above:

associationOutput = <|Group1 → listOutput1,
Group2 → listOutput2, ...,
GroupL → listOutputL|>

KEGGAnalysis can also take as input the output of clustering of time series classification data, e.g. TimeSeriesClusters or

TimeSeriesSingleClusters association of associations. The groups for each class will then have keys labeled "GroupAssociations", that include

the labels used in the clustering. The labels must correspond to protein or gene accessions/IDs. For each class and group the corresponding KEGGAnal-

ysis enrichment is computed and returned.

There are two types of analyses that are carried out, which can be set by the AnalysisType option value. The default "Genomic" analysis is based on

input gene symbols. The "Molecular" analysis is based on molecular input accessions (e.g. compounds "cpd" databases). For multi-omic input the

user may select to do All analyses. In this case an additional outer association is created with labels indicating each of "Genomic" or "Molecular"

analysis carried out.

The enrichment analysis is an over-representation calculation, using a hypergeometric test. For a given a given group (e.g. members of a cluster after

classification), we try to identify which KEGG pathway terms are over-represented by membership of IDs to that cluster. The KEGGAnalysis function

allows us to select the background, and hence address selection bias. Additionally a Benjamini-Hochberg procedure false discovery rate (FDR) may be

calculated for each representation.

Printed from the Complete Wolfram Language Documentation 84

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

The enrichment analysis is an over-representation calculation, using a hypergeometric test. For a given a given group (e.g. members of a cluster after

classification), we try to identify which KEGG pathway terms are over-represented by membership of IDs to that cluster. The KEGGAnalysis function

allows us to select the background, and hence address selection bias. Additionally a Benjamini-Hochberg procedure false discovery rate (FDR) may be

calculated for each representation.

We carry out our KEGGAnalysis for all the classes and groups/subgroups. We only report terms for which there are at least 2 members, and additionally
correct for multiple omics (2 sets of KEGG terms, one each for proteomics and transcriptomics). Please note that this is a time consuming computation.

In[293]:= keggAnalysisCombined = KEGGAnalysiscombinedClusters,
ReportFilter → 2, MultipleList → True, MultipleListCorrection → 2 , AnalysisType → All;

We see that both "Molecular" and "Genomic" analysis is performed:

In[294]:= Keys@keggAnalysisCombined

Out[294]= {Molecular, Genomic}

We can extract both Genomic and molecular analysis:

In[295]:= keggAnalysisCombined"Genomic"

Out[295]=

SpikeMax → G1S1 → path:hsa05016 → 5.34103×10-7, 0.0000916715, True, {66, 386, 15746, 11},
Huntington disease - Homo sapiens (human), {{DNAL1, RNA}}, ⋯ 9⋯ , {{O75489, Protein}},

⋯ 9⋯ , path:hsa00640 → ⋯ 1⋯ , ⋯ 12⋯ , ⋯ 1⋯ , ⋯ 8⋯ 

large output show less show more show all set size limit...

In[297]:= keggAnalysisCombined["Molecular"]

Out[297]= SpikeMax → /G1S1 → /0, G1S2 → /0, G1S3 → /0, G1S4 → /0, G1S5 → /0, G1S6 → /0, G1S7 → /0,
G1S8 → /0, G1S9 → /0, G1S10 → /0, G1S11 → /0, G1S12 → /0, G1S13 → /0, G1S14 → /00,

SpikeMin → /G1S1 → /0, G1S2 → /0, G1S3 → /0, G2S1 → /0,
G2S2 → /path:map01100 → {{0.0248138, 0.0413563, True}, {5, 1654, 5841, 4},

{Metabolic pathways, {{{cpd:C06124, 379.249, 12.6871, Meta}}, {{cpd:C20199, 238.12, 9.70221, Meta}},
{{cpd:C19614, 270.22, 12.7198, Meta}}, {{cpd:C05446, 436.355, 14.3015, Meta}}}}}0,

G3S1 → /path:map04976 → {{0.000826861, 0.00496117, True}, {3, 98, 5841, 2},
{Bile secretion, {{{cpd:C04555, 368.165, 12.0826, Meta}, {cpd:C04555, 368.166, 12.3718, Meta}},

{{cpd:C01921, 465.309, 11.8056, Meta}}}}}00, f1 → /G1S1 → /0, G1S2 → /00,
f2 → /G1S1 → /0, G1S2 → /0, G2S1 → /0, G2S2 → /0, G3S1 → /0, G3S2 → /0, G4S1 → /0,

G4S2 → /0, G5S1 → /0, G5S2 → /00,
f3 → /G1S1 → /0, G1S2 → /0, G2S1 → /0, G2S2 → /0, G3S1 → /0,

G3S2 → /0, G4S1 → /0, G4S2 → /00,
f4 → /G1S1 → /0, G1S2 → /0, G2S1 → /00,
f5 → /G1S1 → /0, G1S2 → /00,
f6 → /G1S1 → /0, G1S2 → /0, G2S1 → /00,
f7 → /G1S1 → /00

Let us extract the names of the pathways found for the "SpikeMin" data:

In[298]:= Query"SpikeMin", All, All, 3, 1@keggAnalysisCombined"Genomic"

The results from a MathIOmica time series clustering enrichment analysis can be exported to spreadsheets using EnrichmentReportExport .

Printed from the Complete Wolfram Language Documentation 85

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

EnrichmentReportExport[results] exports results from enrichment analyses to Excel
spreadsheets, particularly suited for exporting multi-
omics TimeSeriesClusters enrichment analysis results (via

KEGGAnalysis or GOAnalysis). An excel spreadsheet is
generated for each Class, named after the Class key, with
sheets created for and named after each Group in that
Class containing the enrichment output for that Group.

Exporting the enrichment analysis results to spreadsheets.

option name default value

AppendString "" String that will be appended to the file
name after the class name. If a string is not
provided the current Date is appended.

OutputDirectory None OutputDirectory specifies the location
of a directory to output the Excel
spreadsheets generated by the function. If
it is set to None the
NotebookDirectory[] will be used as
a default output directory.

Options for EnrichmentReportExport .

We can export the reports, for example to the $UserDocumentDirectory :

In[205]:= EnrichmentReportExportkeggAnalysisCombined"Genomic",
OutputDirectory → $UserDocumentsDirectory, AppendString → "KEGGAnalysisCombined";

We can export the GO analysis results as well, for example to the $UserDocumentDirectory :

In[206]:= EnrichmentReportExportgoAnalysisCombined,
OutputDirectory → $UserDocumentsDirectory, AppendString → "GOAnalysisCombined";

Visualization of Pathways from KEGG

MathIOmica allows visualization and coloring of KEGG pathways using KEGGPathwayVisual .

KEGGPathwayVisual[pathway] generates a visual representation for a KEGG: Kyoto
Encyclopedia of Genes and Genomes pathway.

Visualizing KEGG pathways.

option name default value

Printed from the Complete Wolfram Language Documentation 86

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

AnalysisType "Genomic" AnalysisType provides a selection for the
type of analysis to perform. "Genomic"
analysis (default) uses gene identifier
based pathway visualization. "Molecular"
analysis uses molecular analysis map
visualization.

AugmentDictionary True AugmentDictionary provides a choice
whether or not to augment the current
ConstantGeneDictionary variable or create
a new one.

BlendColors {RGBColor[
0, 0, 1],

RGBColor[0,
0, 1],

RGBColor[0.5,
0.5, 0.5],

RGBColor[1, 0,
0], RGBColor[
1, 0, 0]}

BlendColors provides a list of colors to be
used in coloring intensities provided and is
used by the IntensityFunction as its first
argument. The colors must be provided as
RGBColor[] specification.

ColorSelection <|"RNA" → "bg",
"Protein" →

"fg"|>

ColorSelection assigns foreground and
background colors in the KEGG pathway
through an association. The Keys point to
labels for multi-omics data, and the values
"bg" and "fg" can point to background and
foreground representations respectively
for each key.

DefaultColors {"fg" -> RGBColor[
0, 0, 0],

"bg" ->
RGBColor[

0, 1, 0]}

DefaultColors provides a list of rules for
setting the colors to be used as default
values for the foreground "fg" and
background "bg" respectively in the
generated pathways. The colors must be
provided as RGBColor[] specification.

ExportMovieOptions {"VideoEncoding"→
"MPEG-4

Video",
"FrameRate"→1}

ExportMovieOptions provides options for
the Export function used internally to
export the pathway list when Intensities
have been provided for a time series
representation of data.

FileExtend ".mov" FileExtend provides a string to be
appended to the file name if the
ResultsFormat is set to "Movie".

Printed from the Complete Wolfram Language Documentation 87

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

FileExtend provides a string to be
appended to the file name if the
ResultsFormat is set to "Movie".

GeneDictionary None GeneDictionary points to an existing
variable to use as a gene dictionary in
annotations. The gene dictionary is used to
convert MemberSet identities provided to
corresponding KEGG identifiers. If
GeneDictionary is set to None the default
ConstantGeneDictionary will be created or
augmented through the use of
GetGeneDictionary .

GetGeneDicitonaryOptions {} The GetGeneDictionaryOptions option
specifies a list of options that will be
passed to the internal GetGeneDictionary
function.

InputID {"UniProt ID",
"Gene Symbol"}

The InputID option specifies the kind of
identifiers/accessions used as input when
identifiers are provided through setting the
MemberSet values.

Intensities None Intensities may be used to provide a set of
intensities that will be used for coloring
components of the pathway. The
intensities are provided as an association
for each ID as single values, or as a list of
values in the case of series data:
<|ID1 →

{intensity list for ID1},
ID2 → {intensity list

for ID2}, ...,
IDN → {intensity list

for IDN}|>.
Intensities must be scaled from -1 to 1, or
selected such that the IntensityFunction
can convert them to a number between 0
to 1.

Printed from the Complete Wolfram Language Documentation 88

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

IntensityFunction (Blend[#1,
(#2+1)/2]&)

IntensityFunction is a function of two
arguments that allows customization of
the coloring for the intensities. The
IntensityFunction value can be any
function which outputs a color, I(#1,#2),
(*where#1 is the BlendColors option value,
and #2 is an intensity vector, that has
values typically ranging from [-1,1].

KEGGAnalysisAssignerOptions {} The KEGGAnalysisAssignerOptions option
specifies a list of options that will be
passed to the internal
KEGGAnalysisAssigner function.

KEGGDatabase "pathway" KEGGDatabase value indicates which KEGG
database to use as the target database.

KEGGMolecular "cpd" KEGGMolecular specifies which database
to use for molecular analysis. The default is
the compound database ("cpd").

KEGGOrganism "hsa" KEGGOrganism indicates which organism
(org) to use for "Genomic" type of analysis.
The default is human analysis org="hsa".

MathIOmicaDataDirectory ConstantMathIOmica-
DataDirectory

MathIOmicaDataDirectory option specifies
the directory where the default
MathIOmica package data are stored. By
default the option is set to create the
standard directory if it does not exist
already.

Printed from the Complete Wolfram Language Documentation 89

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

MathIOmicaDataDirectory option specifies
the directory where the default
MathIOmica package data are stored. By
default the option is set to create the
standard directory if it does not exist
already.

MemberSet All MemberSet selects which members of the
pathway are to be considered. The choices
are:
All: return the pathway only.
{list of identifiers}: a list of identifiers that
will be highlighted. If ORA is set to True the
list must be the output from an over
representation analysis, and the identifiers
will be selected from the last list, second
sublist.
Only IDs that are found to match in the
pathway are colored.
An internal gene dictionary (see
GetGeneDictionary) is used to convert IDs
to KEGG IDs.

MissingValueColor RGBColor[0.4,
0.4, 0.4]

MissingValueColor provides a color to be
used when Intensities are provided to
represent values that are tagged as
Missing[]. The color must be provided as
RGBColor[] specification.

MolecularInputID {"cpd"} MolecularInputID is a string list to indicate
the kind of ID to use for the input molecule
entries.

MolecularOutputID "cpd" MolecularOutputID is a string to indicate
the kind of ID to convert input molecule
entries. The default is "cpd" consistently
with use of the "cpd" database as the
default molecular analysis.

MolecularSpecies "compound" MolecularSpecies specifies the kind of
molecular input.

MovieFilePath None MovieFilePath indicates the path
(including file name) where if
ResultsFormat is set to "Movie" the movie
generated will be saved. The default value
None will generate a file named after the
pathway with extension set by the
FileExtend option in the current directory.

Printed from the Complete Wolfram Language Documentation 90

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

NonUCSC False NonUCSC option set to False assumes
UCSC browser was used in determining an
internal GeneDictionary used in ID
translations where the KEGG identifiers for
genes are number strings (e.g. 4790).
The NonUCSC option can be set to True if
standard KEGG accessions are used in a
user provided GeneDictionary variable, in
the form OptionValue[KEGGOrganism]
<>":"<>"number string", e.g. "hsa:4790"

ORA False ORA can be set to True or False depending
on whether the input is from an over
representation analysis (e.g. output from
KEGGAnalysis), or not respectively.

OutputID "KEGG Gene ID" OutputID is a string to indicate the kind of
ID to convert input genomic analysis
entries. The default is "KEGG Gene ID"
consistently with use of the "pathway"
database as the default genomic analysis.

ResultsFormat "URL" ResultsFormat provides a choice of
output format, the choices are:
"URL": returns a URL of the pathway,
"Figure": returns figure output(s) for the
pathway,
"Movie": in the case of series data returns
a movie/animation of the series pathway
snapshots.

SingleColorPlace "bg" SingleColorPlace selects in the case of a
single identifier input whether to place the
color to the foreground, ("fg") or
background ("bg" set by default).

Species "human" The Species option specifies the species
considered in the calculation.

Printed from the Complete Wolfram Language Documentation 91

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

StandardHighlight {"fg" -> RGBColor[
1, 0, 0],

"bg" ->
RGBColor[0.5,

0.7, 1]}

StandardHighlight provides a list of rules
for setting the highlight colors for the IDs
represented in the pathway (when no
intensities are provided). The list specifies
color rules for foregroung, "fg", and
background, "bg", respectively. The colors
must be provided as RGBColor[]
specification.

Options for KEGGPathwayVisual .

ResultsFormat option setting "Results" value for returned data

"URL" Browser URL pointing to pathway on KEGG database, or if
a list of Intensities was provided a series of URLs
corresponding to each time point or sequential data in the
series.

"Figure" Pathway figure downloaded from the KEGG database, or if
a list of Intensities was provided a series of figures
corresponding to each time point or sequential data in the
series.

"Movie" Name of the output file that contains the generated
movie/animation that is based on the list of Intensities
provided.

ResultsFormat option output for KEGGPathwayVisual

For example, we can look at the B-cell receptor pathway:

In[299]:= exampleBCellReceptor = KEGGPathwayVisual["path:hsa04662"]

Out[299]= /Pathway → path:hsa04662, Results → {https://www.kegg.jp/kegg-bin/show_pathway?map=hsa04662}0

We can open this in a browser:

In[208]:= SystemOpen[exampleBCellReceptor["Results"][[1]]]

We can import directly the pathway:

In[300]:= exampleBCellReceptorFigure = KEGGPathwayVisual"path:hsa04662", ResultsFormat → "Figure"

Out[300]=

Printed from the Complete Wolfram Language Documentation 92

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can zoom in:

In[301]:= ShowexampleBCellReceptorFigure["Results"][[1]], ImageSize → 500

Out[301]=

We can highlight the components:

In[302]:= exampleBCellReceptorFigureHighlight = KEGGPathwayVisual"path:hsa04662", ResultsFormat → "Figure",
MemberSet → Query"SpikeMin", "G2S2", "path:hsa04662"@keggAnalysisCombined"Genomic", ORA → True

Out[302]=

We can zoom in:

In[303]:= ShowexampleBCellReceptorFigureHighlight["Results"][[1]], ImageSize → 500

Out[303]=

Printed from the Complete Wolfram Language Documentation 93

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can also create snapshots and an animation of this data.

First, let's extract the members of the pathway in the analysis:

In[306]:= membersBCellReceptor =
Query"SpikeMin", "G2S2", "path:hsa04662", 3, 2@keggAnalysisCombined"Genomic"[[All, 1]]

Out[306]= {{PTPN6, RNA}, {IKBKB, RNA}, {INPPL1, RNA}, {NFATC3, RNA}, {Q08209, Protein}, {JUN, RNA},
{PPP3R1, RNA}, {CARD11, RNA}, {VAV1, RNA}, {MAPK3, RNA}, {AKT2, RNA}, {INPP5D, RNA},
{RELA, RNA}, {IFITM1, RNA}, {P29350, Protein}, {NFATC1, RNA}, {KRAS, RNA}, {PRKCB, RNA},
{CHUK, RNA}, {SOS2, RNA}, {NRAS, RNA}, {RAC2, RNA}, {PIK3R1, RNA}, {PPP3CB, RNA}, {MAP2K1, RNA},
{PIK3CB, RNA}, {PIK3CD, RNA}, {SOS1, RNA}, {PIK3CA, RNA}, {MALT1, RNA}, {CR2, RNA}, {BTK, RNA}}

First, let's extract the members of the pathway in the analysis:

In[307]:= intensitiesRNABCellReceptor = DeleteMissingQuery[Key[#] & /@ membersBCellReceptor]@rnaFinalTimeSeries;
intensitiesproteinBCellReceptor =

DeleteMissingQuery[Key[#] & /@ membersBCellReceptor]@proteinFinalTimeSeries;
intensitiesAll = JoinintensitiesRNABCellReceptor, intensitiesproteinBCellReceptor

We can now extract and plot the sequence of figures:

In[310]:= exampleBCellReceptorFigureTimeSet = KEGGPathwayVisual"path:hsa04662",
ResultsFormat → "Figure", MemberSet → membersBCellReceptor, Intensities → intensitiesAll

Out[310]=

Printed from the Complete Wolfram Language Documentation 94

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

Out[310]=

We can use ListAnimate to generate a movie/animation of the results

Printed from the Complete Wolfram Language Documentation 95

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

We can use ListAnimate to generate a movie/animation of the results

In[311]:= ListAnimateexampleBCellReceptorFigureTimeSet["Results"], ImageSize → Automatic

Out[311]=

We can set the ResultsFormat to "Movie" to output a movie version:

In[232]:= KEGGPathwayVisual"path:hsa04662", ResultsFormat → "Movie",
MemberSet → membersBCellReceptor, Intensities → intensitiesAll

Related Tutorials

▪ MathIOmica Dynamic Transcriptome

▪ MathIOmica Overview

▪ MathIOmica Guide

Printed from the Complete Wolfram Language Documentation 96

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language

