
MATH I OMICA PACKAGE TUTORIAL Related Tutorials ▼ Functions ▼ URL ▼

MathIOmica: Omics Analysis Tutorial
  Loading the MathIOmica Package   Metabolomic Data

  Data in MathIOmica   Combined Data Clustering

  Transcriptome Data   Visualization

  Proteomic Data   Annotation and Enrichment

MathIOmica is an omics analysis package designed to facilitate method development for the analysis of multiple omics in Mathematica, particularly

for dynamics (time series/longitudinal data). This extensive tutorial follows the analysis of multiple dynamic omics data (transcriptomics, proteomics,

and  metabolomics  from  human  samples).  Various  MathIOmica  functions  are  introduced  in  the  tutorial,  including  additional  discussion  of  related

functionality. We should note that the approach methods are simply an illustration of MathIOmica functionality, and should not be considered as a

definitive  approach.  Additionally,  certain  details  are  included  to  illustrate  common  complications  (e.g.  renaming  samples,  combining  datasets,

transforming accessions from one database to another, dealing with replicates and Missing data, etc.).

After a brief discussion of data in MathIOmica, each example data (transcriptome, proteome and metabolome) are imported and preprocessed. Next

a simulation is carried out to obtain datasets for each omics used to assess statistical significance cutoffs. The datasets are combined, and classified

for time series patterns,  followed by clustering.  The clusters are visualized,  and biological  annotation of  Gene Ontology (GO) and pathway analysis

(KEGG: Kyoto Encyclopedia of Genes and Genomes) are finally considered.

N.B.1 For a more streamlined/simple example with less discussion please check out the tutorial on MathIOmica Dynamic Transcriptome.

N.B.2 We highly recommend the saving of intermediate results whenever possible. Some functions perform lengthy intensive computations and the

performance may vary from system to system. Please use Put  to save expressions to a file, and equivalently Get  to recover these expressions.

Loading the MathIOmica Package
The functions defined in the MathIOmica` context provide support for conducting analyses of omics data (See also the MathIOmica Overview).

This loads the package:

In[1]:= << MathIOmica`

Also we can load MathIOmica as:

In[1]:= Needs"MathIOmica`"

Data in MathIOmica
In  this  section  we  will  discuss  the  data  objects  in  use  by  MathIOmica,  particularly  the  format  of  an  OmicsObject.  The  data  in  the  tutorial  will  be

imported as an OmicsObject which is first described in this section. Then we present the example data included with MathIOmica. The example data

will be imported in subsequent sections to illustrate analysis methods available in MathIOmica.
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Data Format: OmicsObject

In  MathIOmica  the  calculations  utilize  what  we  term  an  omics  object  (OmicsObject).  An  OmicsObject  is  an  association  of  associations  with  some

additional characteristics. It has an external  (outer) association to denote samples and an internal (inner) association for annotation.

OmicsObject Structure

In  an  OmicsObject  the  outer  association  has  M  outer  labels  as  keys,  corresponding  to  M  samples.  Across  the  samples  there  are  N  inner  labels  (e.g.

identifiers  for  genes/proteins),  and   inner  labels  are  the  same  across  samples.  For  a  given  jth  outer  label,  OuterLabelj,  the  kth  inner  label,

InnerLabelk has a value of : 

InnerLabelk → {{Measurementsjk}, {Metadatajk}}

OmicsObject structure:

<|OuterLabel1 → <|InnerLabel1 → {{Measurements11}, {Metadata11}},
InnerLabel2 → {{Measurements12}, {Metadata12}},
InnerLabel3 → {{Measurements13}, {Metadata13}},
...,
InnerLabelk → {{Measurements1 k}, {Metadata1 k}},
...,
InnerLabelN → {{Measurements1 N}, {Metadata1 N}}|>,

OuterLabel2 → <|InnerLabel1 → {{Measurements21}, {Metadata21}},
InnerLabel2 → {{Measurements22}, {Metadata22}},
InnerLabel3 → {{Measurements23}, {Metadata23}},
...,
InnerLabelk → {{Measurements2 k}, {Metadata2 k}},
...,
InnerLabelN → {{Measurements2 N}, {Metadata2 N}}|>,

...,
OuterLabelj → <|InnerLabel1 → {{Measurementsj1}, {Metadataj1}},

InnerLabel2 → {{Measurementsj2}, {Metadataj2}},
InnerLabel3 → {{Measurementsj3}, {Metadataj3}},
...,
InnerLabelk → {{Measurementsjk}, {Metadatajk}},
...,
InnerLabelN → {{MeasurementsjN}, {MetadatajN}}|>,

...,
OuterLabelM → <|InnerLabel1 → {{MeasurementsM1}, {MetadataM1}},

InnerLabel2 → {{MeasurementsM2}, {MetadataM2}},
InnerLabel3 → {{MeasurementsM3}, {MetadataM3}},
...,
InnerLabelk → {{MeasurementsMk}, {MetadataMk}},
...,
InnerLabelN → {{MeasurementsMN}, {MetadataMN}}|>

|>

For  any  jth  outer  label,  OuterLabelj,  it  is  possible  that  the  mth  inner  label,  InnerLabelm  is  missing  and  takes  a  Missing[]  value  in  the  form

InnerLabelm → Missing[].  This  can  happen  if  the  measurement  was  not  performed  for  the  sample,  or  no  value  was  recorded  (e.g.  mass

spectrometry data).

Printed from the Complete Wolfram Language Documentation 2

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



For example here is a list of 3 samples using protein identifiers (specifically, these are UniProt accessions). The measurements are relative intensities in 
this case and the metadata is the number of peptides per sample.

In[67]:= omicsObjectExample = "FirstSample" → {"A0AVT1"} → {{0.937}, {17}}, {"A0MZ66"} → {{1.059}, {9}},
{"A1A4S6"} → {{1.03}, {11}}, {"A1L0T0"} → {{1.268}, {4}}, {"A0FGR8"} → Missing[],

"SecondSample" → {"A0AVT1"} → {{1.003}, {17}}, {"A0MZ66"} → Missing[],
{"A1A4S6"} → {{0.779}, {11}}, {"A1L0T0"} → {{0.917}, {4}}, {"A0FGR8"} → {{0.921}, {24}},

"ThirdSample" → {"A0AVT1"} → {{1.064}, {19}}, {"A0MZ66"} → Missing[],
{"A1A4S6"} → {{0.545}, {5}}, {"A1L0T0"} → Missing[], {"A0FGR8"} → {{0.87}, {23}};

The outer labels of an OmicsObject are strings, while the inner labels are typically lists of strings. 

Methods to Import Data as an OmicsObject

There are multiple methods to import data as an OmicsObject using MathIOmica. Four functions assist with importing data directly from text files:

(i)  DataImporter  provides a graphical dynamic interface that utilizes file headers to assist with the creation of OmicsObject variables from multiple

files.

(ii) The OmicsObjectCreator  function provides a function to create an OmicsObject from already existing/imported data in a Mathematica notebook.

(iii)  DataImporterDirect  and (iv)  DataImporterDirectLabeled  provide additional  expert  mode functions that  may be used to directly  import  data as

OmicsObject variables without a graphical interface. 
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DataImporter[associationName] provides a graphical interface to extract data and create 
an OmicsObject variable associationName for associations 
of information.

OmicsObjectCreator[outerLabels,
innerLabels, measurements,metadata]

creates an OmicsObject  for use with MathIOmica. It uses 
the following inputs:
      outerLabels Outer labels (keys) for the 

OmicsObject.

      innerLabels Inner labels (keys) for 
identifiers in the OmicsObject.

      measurements List of measurements for each 
inner label.

      metadata List of metadata for each label.

DataImporterDirect[
positionsList, fileList, headerLines]

Expert Usage: The DataImporterDirect  function is a helper 

function originally created for DataImporter . 

DataImporterDirect[
positionsList, fileList, headerLines]

 creates an 

OmicsObject importing the column number in 
positionsList  from the fileList file path list, and importing 
data by skipping a number of headerLines.

DataImporterDirectLabeled[
sampleRules, fileList, headerLines,
headerColumnAssociations]

Expert Usage: The DataImporterDirectLabeled  function 
creates an OmicsObject association for variableName, 
by imporing data from the files at the paths specified in 
the fileList, using the sampleRules as a label to column 
header imported rule for each file, and the 
headerColumnAssociations list of associations to associate 
column headers to column positions for each file.

Functions for importing/creating OmicsObject datasets.

Working with OmicsObject Data

An OmicsObject is an association of associations, and so Query can be used directly to access and manipulate components. MathIOmica also offers

multiple functions that can implement computations and manipulation of an OmicsObject:
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Applier[ function, inputData] applies function to OmicsObject, association or list 
inputData components.

ApplierList[ function, inputData] applies function to list of lists from an association, nested 
association or components or a matrix inputData.

ConstantAssociator[
inputAssociation, associationAddition]

adds multi key constant to an OmicsObject (or an 
association of associations) inputAssociation, with each 
addition specified in a single association 
associationAddition, of form <|addition1→ 
Value1,addition2→ Value2,...|>.

CreateTimeSeries[dataIn] creates a time series list across an OmicsObject dataIn 
using outer Keys for points.

EnlargeInnerAssociation[omicsObjectList] combines a list of OmicsObject (associations of 
associations)  omicsObjectList elements  by enlarging the 
inner associations - inner association Keys must be 
different.

EnlargeOuterAssociation[omicsObjectList] combines a list, omicsObjectList, of OmicsObject (or 
associations of associations) elements to a combined 
output by enlarging the outer associations - outer 
association keys must be different.

FilteringFunction[omicsObject,cutoff] filters an OmicsObject data by a chosen comparison (by 
default greatr or equal) to a cutoff .

FilterMissing[omicsObject, percentage] filters out data from omicsObject if across the datasets a 
percentage of data points is missing.

LowValueTag[omicsObject, valueCutoff] takes an omicsObject and tags values in specified position 

as Missing [] based on provided valueCutoff .

MeasurementApplier[ function,omicsObject] applies a function to the measurement list of an 
omicsObject, ignoring missing values.

OmicsObjectMerge[
{omicsObject1,omicsObject2, …}, f]

merges a list of OmicsObject components 
{omicsObject1,omicsObject2, …}, using the function f to 
combine values with the same inner and outer keys.

OmicsObjectPairedMerge[
omicsObject1,omicsObject2]

merges pairwise omicsObject1 and omicsObject2 values 
that have the same inner and outer keys.

Returner[originalAssociation, update] returns a modified originalAssociation updated at a 
specified position by the single association update, e.g. 

from Applier  or ApplierList  result.

Functions for manipulating OmicsObject datasets.
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Functions for manipulating OmicsObject datasets.

Example Data 

MathIOmica comes with multiple example data. The data can be found in the ConstantMathIOmicaExamplesDirectory :

We can get a listing of the current example Data by evaluating:

In[3]:= FileNames__, ConstantMathIOmicaExamplesDirectory

The data contains both initial  (raw) data and additionally intermediate data that have been analyzed in MathIOmica and are used in the examples

(N.B. these files should not be altered or removed). The dynamic raw datasets are from an integrative Personal Omics Profile as described below:

integrative Personal Omics Profiling (iPOP) Data from the first integrative Omics Profiling (iPOP) is 
used comprised of dynamics from proteomics 
transcriptomics and metabolomics. The data corresponds 
to a time series analysis of omics from blood componenets 
from a single individual.
Different samples (from 7 to 21 included here) were 
obtained at different time points. The time points included 
here correspond to days ranging from 186th to the 400th 
day of the study, (this can be represented in the following 
sample to day association: ,7→186,8→255,9→289,10→
290,11→292,12→294,13→297,14→301,15→307,16→311,17→
322,18→329,19→369,20→380,21→400-. On day 289 the 
subject of the study had a Respiratory syncytial virus 
infection. Additionally, after day 301, the subject displayed 
high glucose levels and was eventually diagnosed with 
type 2 diabetes. The analyzed mapped data are used in 
these examples for illustrative purposes - these and 
additional dynamic omics data that will become available 
can also be accessed MathIOmica website at 
https://mathiomica.org. More information regarding the 
iPOP dataset can also be found in the original iPOP paper: 
Chen*, Mias*, Li- Pook-Than*, Jiang* et al.,
Personal Omics Profiling Reveals Dynamic

Molecular and Medical Phenotypes. Cell 148 (6),
p1293 (2012), PMID : 22 424236.
http : // dx.doi.org / 10.1016 / j.cell .2012× .02× .009.
and related review (including summary):
Mias and Snyder Personal Genomes Quantitative

Dynamic Omics and Personalized Medicine.
Quantitative Biology 1 (1) (2013), PMCID : PMC4366006.
http : // dx.doi.org / 10.1007 / s40484- 013- 0005- 3.
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Data from the first integrative Omics Profiling (iPOP) is 
used comprised of dynamics from proteomics 
transcriptomics and metabolomics. The data corresponds 
to a time series analysis of omics from blood componenets 
from a single individual.
Different samples (from 7 to 21 included here) were 
obtained at different time points. The time points included 
here correspond to days ranging from 186th to the 400th 
day of the study, (this can be represented in the following 
sample to day association: ,7→186,8→255,9→289,10→
290,11→292,12→294,13→297,14→301,15→307,16→311,17→
322,18→329,19→369,20→380,21→400-. On day 289 the 
subject of the study had a Respiratory syncytial virus 
infection. Additionally, after day 301, the subject displayed 
high glucose levels and was eventually diagnosed with 
type 2 diabetes. The analyzed mapped data are used in 
these examples for illustrative purposes - these and 
additional dynamic omics data that will become available 
can also be accessed MathIOmica website at 
https://mathiomica.org. More information regarding the 
iPOP dataset can also be found in the original iPOP paper: 
Chen*, Mias*, Li- Pook-Than*, Jiang* et al.,
Personal Omics Profiling Reveals Dynamic

Molecular and Medical Phenotypes. Cell 148 (6),
p1293 (2012), PMID : 22 424236.
http : // dx.doi.org / 10.1016 / j.cell .2012× .02× .009.
and related review (including summary):
Mias and Snyder Personal Genomes Quantitative

Dynamic Omics and Personalized Medicine.
Quantitative Biology 1 (1) (2013), PMCID : PMC4366006.
http : // dx.doi.org / 10.1007 / s40484- 013- 0005- 3.

Example iPOP Set Description File Names located in the 
ConstantMathIOmicaExamplesDirectory.

iPOP Transcriptome. The
transcriptomic data included
was obtained from mapping of
the originally RNA Sequencing
raw data using the Tuxedo
suite. The data corresponds to
transcriptome from peripheral
blood mononuclear cells (PBMCs).

iPOP_ 07_genes.fpkm_tracking
iPOP_ 08_genes.fpkm_tracking
iPOP_ 09_genes.fpkm_tracking
iPOP_ 10_genes.fpkm_tracking
iPOP_ 11_genes.fpkm_tracking
iPOP_ 12_genes.fpkm_tracking
iPOP_ 13_genes.fpkm_tracking
iPOP_ 14_genes.fpkm_tracking
iPOP_ 15_genes.fpkm_tracking
iPOP_ 16_genes.fpkm_tracking
iPOP_ 17_genes.fpkm_tracking
iPOP_ 18_genes.fpkm_tracking
iPOP_ 19_genes.fpkm_tracking
iPOP_ 20_genes.fpkm_tracking
iPOP_ 21_genes.fpkm_tracking

iPOP Proteome. The Proteomics
data from analysis of mass
spectrometry data using the
Sequest algorithm implemented
by ProteomeDiscoverer. The data
corresponds to proteome from PBMCs.

The names of the files provide a
correspondence of samples to
Tandem Mass Tag labels in order
of increasing m/z values from
126 to 131 amu. 6 TMT labels
were used in each experiment.

The data has been adapted from the
original to UniProt accessions.

8_7_9_10_11_14_MulticonsensusReports_3Replicates.csv
8_12_13_15_16_14_MulticonsensusReports_3Replicates.cs
v
8_17_19_20_21_14_MulticonsensusReports_3Replicates.cs
v

iPOP Metabolome. The Metabolomics
data from analysis of mass
spectrometry data. The data
corresponds to small molecule
metabolomics from plasma ran
with technical triplicates.

The names of the files provide a
correspondence of samples ran
in positive or negative mode.

metabolomics_negative_mode.csv
metabolomics_positive_mode.csv

Description of Example iPOP original datasets and corresponding files in the ConstantMathIOmicaExamplesDirectory . N.B. this table is provided as a reference for the examples, and these files should not be altered or 

removed.

Various analyzed datasets are used in the MathIOmica documentation for examples:
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Data Description File Name(s) located in the 
ConstantMathIOmicaExamplesDirectory .

iPOP transcriptome imported as an
OmicsObject across all timepoints.

rnaExample

iPOP proteome data imported as an
OmicsObject across all timepoints.

proteinExample

iPOP metabolome data imported as an
OmicsObject across all timepoints
and technical replicates for
negative and positive mode aligned
mass spectrometry features.

metabolomicsNegativeModeExample
metabolomicsPositiveModeExample

Example time series from proteomics. proteinTimeSeriesExample

Example classification
results from proteomics.

proteinClassificationExample

Example classification
results from proteomics.

proteinClusteringExample

Example combined clustering
results from transcriptome,

proteome and metabolome data.

combinedClustersExample

Example enrichment analysis results
for Gene Ontology and KEGG
pathway analysis for combined
omics data in this tutorial.

combinedGOAnalysis
combinedKEGGAnalysis

Spectra from proteomics mass
spectrometry data examples.

small.pwiz.1.1.mzML
exampleMS3.mzXML

Description of example analyzed datasets and corresponding files in the ConstantMathIOmicaExamplesDirectory . N.B. this table is provided as a reference for the examples, and these files should not be altered or 

removed.

Transcriptome Data
In this section we import the example transcriptome iPOP dataset, and illustrate a preprocessing approach for this omic dataset.

Importing OmicsObject Transcriptome Data

We  first  import  the  transcriptomics  data  example  (for  details  on  how  to  import  such  data  please  refer  to  DataImporter ,  DataImporterDirect ,

DataImporterDirectLabeled  and OmicsObjectCreator  documentation).
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We import the transcriptomics OmicsObject

In[68]:= rnaExample = GetFileNameJoinConstantMathIOmicaExamplesDirectory, "rnaExample"

Out[68]=

7 → {FAM138A, RNA} → {{0}, {OK}}, {OR4F5, RNA} → {{0}, {OK}},
{LOC729737, RNA} → {{2.73998}, {OK}}, ⋯ 25262⋯ , {LOC100507412, RNA} → {{0}, {OK}},
{RNA45S5, RNA} → {{0}, {OK}}, {DUX4L, RNA} → {{0}, {OK}},

8 →  ⋯ 1⋯ , ⋯ 11⋯ , 20 →  ⋯ 1⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

There are multiple samples given by the outer associations. We can use Query to get any data. For example we can get the outer keys:

In[69]:= Query[Keys]@rnaExample

Out[69]= {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

Notice that we have used "@" to form a Query using a prefix function application, which is used throughout the MathIOmica tutorials and documenta-

tion. This is the same as using the [ ] form:

In[70]:= Query[Keys][rnaExample]

Out[70]= {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

We can get the expression raw data from any sample and entry. For example, the 10th and 14th entries in sample 12:

In[71]:= Query["12", {7777, 55}]@rnaExample

Out[71]= /{NDNL2, RNA} → {{21.1197}, {OK}}, {ATAD3C, RNA} → {{0.560212}, {OK}}0

The  keys  correspond  to  "Gene  Symbols"  and  are  also  tagged  with  an  "RNA"  label.  The  values  of  all  the  keys/IDs  correspond  to

{{measurements}, {metadata}},  and  in  this  particular  example  {{"FPKM" values}, {"FPKM status"}}.  Here,  FPKM  stands  for

Fragments Per Kilobase of transcript per Million mapped reads. The example is from mapped RNA-Sequencing data. FPKM is then a relative measure

of transcript (gene) expression.

We can query all timepoints for a particular gene of interest if it exists. We must use the same labels as the actual keys of the OmicsObject:

In[72]:= Query[All, Key@{"NFKBIB", "RNA"}]@rnaExample

Out[72]= /7 → {{12.7644}, {OK}}, 8 → {{14.9997}, {OK}}, 9 → {{15.8482}, {OK}},
10 → {{17.3504}, {OK}}, 11 → {{18.5309}, {OK}}, 12 → {{16.7081}, {OK}}, 13 → {{14.6549}, {OK}},
14 → {{17.3951}, {OK}}, 15 → {{8.93065}, {OK}}, 16 → {{16.2545}, {OK}}, 17 → {{17.9217}, {OK}},
18 → {{16.0331}, {OK}}, 19 → {{18.7293}, {OK}}, 20 → {{10.8115}, {OK}}, 21 → {{12.9051}, {OK}}0

We note that we added Key@ before the bracket to indicate that this list is used as a key for the inner associations.
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We can query all timepoints for multiple genes of interest if it exists. We must use the same labels as the actual keys of the OmicsObject:

In[73]:= Query[All, {Key@{"NFKBIB", "RNA"}, Key@{"NDNL2", "RNA"}}]@rnaExample

Out[73]= /7 → /{NFKBIB, RNA} → {{12.7644}, {OK}}, {NDNL2, RNA} → {{13.6201}, {OK}}0,
8 → /{NFKBIB, RNA} → {{14.9997}, {OK}}, {NDNL2, RNA} → {{16.3813}, {OK}}0,
9 → /{NFKBIB, RNA} → {{15.8482}, {OK}}, {NDNL2, RNA} → {{16.2763}, {OK}}0,
10 → /{NFKBIB, RNA} → {{17.3504}, {OK}}, {NDNL2, RNA} → {{17.2483}, {OK}}0,
11 → /{NFKBIB, RNA} → {{18.5309}, {OK}}, {NDNL2, RNA} → {{18.3254}, {OK}}0,
12 → /{NFKBIB, RNA} → {{16.7081}, {OK}}, {NDNL2, RNA} → {{21.1197}, {OK}}0,
13 → /{NFKBIB, RNA} → {{14.6549}, {OK}}, {NDNL2, RNA} → {{22.0412}, {OK}}0,
14 → /{NFKBIB, RNA} → {{17.3951}, {OK}}, {NDNL2, RNA} → {{17.1224}, {OK}}0,
15 → /{NFKBIB, RNA} → {{8.93065}, {OK}}, {NDNL2, RNA} → {{10.4774}, {OK}}0,
16 → /{NFKBIB, RNA} → {{16.2545}, {OK}}, {NDNL2, RNA} → {{23.6771}, {OK}}0,
17 → /{NFKBIB, RNA} → {{17.9217}, {OK}}, {NDNL2, RNA} → {{21.8782}, {OK}}0,
18 → /{NFKBIB, RNA} → {{16.0331}, {OK}}, {NDNL2, RNA} → {{21.4414}, {OK}}0,
19 → /{NFKBIB, RNA} → {{18.7293}, {OK}}, {NDNL2, RNA} → {{19.9134}, {OK}}0,
20 → /{NFKBIB, RNA} → {{10.8115}, {OK}}, {NDNL2, RNA} → {{22.5756}, {OK}}0,
21 → /{NFKBIB, RNA} → {{12.9051}, {OK}}, {NDNL2, RNA} → {{22.55}, {OK}}00

Or in a more concise form

In[74]:= Query[All, Key[#] & /@ {{"NFKBIB", "RNA"}, {"NDNL2", "RNA"}}]@rnaExample

Out[74]= /7 → /{NFKBIB, RNA} → {{12.7644}, {OK}}, {NDNL2, RNA} → {{13.6201}, {OK}}0,
8 → /{NFKBIB, RNA} → {{14.9997}, {OK}}, {NDNL2, RNA} → {{16.3813}, {OK}}0,
9 → /{NFKBIB, RNA} → {{15.8482}, {OK}}, {NDNL2, RNA} → {{16.2763}, {OK}}0,
10 → /{NFKBIB, RNA} → {{17.3504}, {OK}}, {NDNL2, RNA} → {{17.2483}, {OK}}0,
11 → /{NFKBIB, RNA} → {{18.5309}, {OK}}, {NDNL2, RNA} → {{18.3254}, {OK}}0,
12 → /{NFKBIB, RNA} → {{16.7081}, {OK}}, {NDNL2, RNA} → {{21.1197}, {OK}}0,
13 → /{NFKBIB, RNA} → {{14.6549}, {OK}}, {NDNL2, RNA} → {{22.0412}, {OK}}0,
14 → /{NFKBIB, RNA} → {{17.3951}, {OK}}, {NDNL2, RNA} → {{17.1224}, {OK}}0,
15 → /{NFKBIB, RNA} → {{8.93065}, {OK}}, {NDNL2, RNA} → {{10.4774}, {OK}}0,
16 → /{NFKBIB, RNA} → {{16.2545}, {OK}}, {NDNL2, RNA} → {{23.6771}, {OK}}0,
17 → /{NFKBIB, RNA} → {{17.9217}, {OK}}, {NDNL2, RNA} → {{21.8782}, {OK}}0,
18 → /{NFKBIB, RNA} → {{16.0331}, {OK}}, {NDNL2, RNA} → {{21.4414}, {OK}}0,
19 → /{NFKBIB, RNA} → {{18.7293}, {OK}}, {NDNL2, RNA} → {{19.9134}, {OK}}0,
20 → /{NFKBIB, RNA} → {{10.8115}, {OK}}, {NDNL2, RNA} → {{22.5756}, {OK}}0,
21 → /{NFKBIB, RNA} → {{12.9051}, {OK}}, {NDNL2, RNA} → {{22.55}, {OK}}00

We should also note that  we can take advantage of Mathematica's native direct access to Wolfram Alpha,  to look up any "Gene Symbol" information by 
evaluating (needs a network connection):

In[75]:= NFKBIB2

Here is an image of the output:
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Processing Transcriptome Mapped Data

We  will  next  preprocess  the  imported  transcriptome  data.  We  will  first  relabel  the  data,  carry  out  quantile  normalization  and  filtering  and  we  will

finally create time series.

Labeling, Normalization and Filtering

Re-labeling Samples with Times

First, we illustrate how to change the outer keys. In this example, we notice that the sample numberings do not correspond to actual days, so we may

want to adjust the outer keys to correspond to real times. 

We form an association between samples to actual days of the study:

In[76]:= sampleToDays =
3"7" → "186", "8" → "255", "9" → "289", "10" → "290", "11" → "292", "12" → "294", "13" → "297", "14" → "301",
"15" → "307", "16" → "311", "17" → "322", "18" → "329", "19" → "369", "20" → "380", "21" → "400"4;
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We can now do a KeyMap to rename the outer keys:

In[77]:= rnaLongitudinal = KeyMap[sampleToDays, rnaExample]

Out[77]=

186 → {FAM138A, RNA} → {{0}, {OK}},
{OR4F5, RNA} → {{0}, {OK}}, {LOC729737, RNA} → {{2.73998}, {OK}}, ⋯ 25262⋯ ,
{LOC100507412, RNA} → {{0}, {OK}}, {RNA45S5, RNA} → {{0}, {OK}}, {DUX4L, RNA} → {{0}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Quantile Normalization

QuantileNormalization[data] performs quantile normalization of data.

QuantileNormalization  can perform quantile normalization across various samples for multiple forms of data, including OmicsObject and matrix data.

We normalize the transcriptome data using the QuantileNormalization  function. The Measurement is located in position 1, 1 in the list.

In[78]:= rnaQuantileNormed = QuantileNormalizationrnaLongitudinal, ListIndex → 1, ComponentIndex → 1

Out[78]=

186 → {FAM138A, RNA} → {{0.}, {OK}}, {OR4F5, RNA} → {{0.}, {OK}},
{LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25262⋯ , {LOC100507412, RNA} → {{0.}, {OK}},
{RNA45S5, RNA} → {{0.}, {OK}}, {DUX4L, RNA} → {{0.}, {OK}}, ⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Tag Missing and Low Values

Next, we will tag values of  less than 1 FPKM as Missing. Additionally, we will treat values of FPKM less than 5 as "noise" and set them all to a token

value of 1.

LowValueTag[omicsObject, valueCutoff] takes an omicsObject and tags values in specified position 
as Missing[] based on provided valueCutoff .

LowValueTag  allows us to tag low values.

Printed from the Complete Wolfram Language Documentation 13

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



option name default value

ComponentIndex 1 Selection of which component of a list to 
use in the association or OmicsObject 
input values.

ListIndex 1 Selection of which list to use in the 
association or OmicsObject input values.

OtherReplacement _Missing :>
Missing[]

Replacement rule for any other kind of 
replacement in the data.

ValueReplacement Missing[] Value that specifies how tagged data 
points will be replaced.

Options for LowValueTag .

We first use  LowValueTag  to tag values of 0 as Missing[]:

In[79]:= rnaZeroTagged = LowValueTagrnaQuantileNormed, 0

Out[79]=

186 → {FAM138A, RNA} → {{Missing[]}, {OK}},
{OR4F5, RNA} → {{Missing[]}, {OK}}, {LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25263⋯ ,
{RNA45S5, RNA} → {{Missing[]}, {OK}}, {DUX4L, RNA} → {{Missing[]}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We next use  LowValueTag  again to set all FPKM values <1 to unity:

In[80]:= rnaNoiseAdjusted = LowValueTag[rnaZeroTagged, 1, ValueReplacement → 1]

Out[80]=

186 → {FAM138A, RNA} → {{Missing[]}, {OK}},
{OR4F5, RNA} → {{Missing[]}, {OK}}, {LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25263⋯ ,
{RNA45S5, RNA} → {{Missing[]}, {OK}}, {DUX4L, RNA} → {{Missing[]}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Filter Data

We will next remove values that have been tagged as Missing[], retaining data that have at least 3/4 data points available across all samples. Here we

use the function FilterMissing :

FilterMissing[omicsObject, percentage] filters out data from omicsObject, retaining data across the 
datasets with a percentage of data points not missing.

FilterMissing  allows the removal of data marked as Missing[], and retains only data with measurements available for a certain percentage of samples.
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option name default value

MininumPoints 3 Minimum number of datapoints to keep.

Reference {} Select a reference outer key for which 
should remove dataset if the reference 
point has a Missing value.

ShowPlots True Whether to show summary plots.

Options for FilterMissing .

In this dataset we will use a reference point, day "255" which was a healthy measurement. 

Hence, we filter out data where the reference point "255" is missing and retain data with at least 3/4 points available:

In[81]:= rnaFiltered = FilterMissingrnaNoiseAdjusted, 3/4, Reference → "255"
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{Missing -> Counts: , /0 → 18427, 1 → 68410}

0
1

Out[81]=

186 → {FAM138A, RNA} → {{Missing[]}, {OK}},
{OR4F5, RNA} → {{Missing[]}, {OK}}, {LOC729737, RNA} → {{2.2946}, {OK}}, ⋯ 25263⋯ ,
{RNA45S5, RNA} → {{Missing[]}, {OK}}, {DUX4L, RNA} → {{Missing[]}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , 380 → ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Create Transcriptome Time Series

We  can  now  create  time  series  for  each  of  the  genes.  MathIOmica  provides  functions  to  facilitate  the  process,  such  as  CreateTimeSeries  and

TimeExtractor . The functions assume an OmicsObject as an input for which times have been used as the sample labels (outer keys).
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CreateTimeSeries[omicsObject] creates a time series list across an OmicsObject using 
outer keys as times.

TimeExtractor[omicsObject] extracts a list of sorted times from an OmicObject's outer 
keys.

We extract the times for the filtered RNA data using TimeExtractor :

In[82]:= timesRNA = TimeExtractorrnaFiltered

Out[82]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

For each gene we now extract a time series (list of values) corresponding to these times:

In[83]:= timeSeriesRNA = CreateTimeSeriesrnaFiltered

Out[83]=

{FAM138A, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{OR4F5, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{LOC729737, RNA} → {2.2946, 1, 4.67694, 4.48131, 4.95507, 1,

1.25726, 2.14767, 1.93219, 1, 2.58217, 2.31301, 4.10284, 3.80929, 1.45471},
{DDX11L1, RNA} → {5.91665, 4.32081, 3.19599, 3.64164, 2.7327, 2.13461, 2.17168,

3.23429, 1.89576, 3.0267, 4.34004, 7.27001, 2.01132, 9.27701, 7.54415},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

{LOC100507412, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{RNA45S5, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{DUX4L, RNA} → {Missing[], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

large output show less show more show all set size limit...

Take Log Ratios Compared to Reference in Transcriptome Time Series

Next, we want to use log ratios of expression at any time point compared to a healthy datapoint. 

SeriesApplier[ function,data] applies a given function to data, an association of lists, 
implementing masking for Missing values.

Applying a function to a series with Missing data.
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We first use SeriesApplier  to implement the logarithm:

In[84]:= timeSeriesRNALog = SeriesApplierLog, timeSeriesRNA

Out[84]=

{FAM138A, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{OR4F5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{LOC729737, RNA} → {0.830556, 0, 1.54264, 1.49992, 1.60041, 0, 0.228935,

0.764385, 0.658653, 0, 0.94863, 0.838548, 1.41168, 1.33744, 0.374807},
{DDX11L1, RNA} → {1.77777, 1.46344, 1.1619, 1.29243, 1.00529, 0.758282, 0.775501,

1.17381, 0.639619, 1.10747, 1.46788, 1.98376, 0.698792, 2.22754, 2.02077},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{LOC100507412, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{RNA45S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{DUX4L, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

large output show less show more show all set size limit...

Now  we  need  to  compare   to  use  log  ratios  of  expression  at  any  time  point  compared  to  a  healthy  datapoint.  We  can  use  the  function

SeriesInternalCompare :

SeriesInternalCompare[associationOfLists] compares each value in each list of associationOfLists to 
an internal reference value in the list, if the reference point 
itself is not Missing.

Comparing values in a series to an internal reference point in the series.
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option name default value

CompareFunction (If[MatchQ[
Head[#2],
Missing],

Missing[],
(#1- #2)]&)

The function is used by a Query operation 
on non-missing input data. Namely: 
QueryAll,CompareFunction

#,#ComparisonIndex&@

ComparisonIndex 1 List position of list value that will be used 
as a reference data point.

DeleteRule {Head, Missing} DeleteRule allows the customization of 
how to select values for the reference data 
point for which its key should be deleted.  
The DeleteRule value takes the 
structure 
deleteRuleOptionValue =

{MatchQ first argument,
MatchQ second argument}

.

The MatchQ function referred to here is 
implemented by SeriesInternalCompare  
internally, and uses the 
deleteRuleOptionValue as:
MatchQ[

deleteRuleOptionValue[[1]][
reference

comparison value],
deleteRuleOptionValue[[2]]]

The default removes the corresponding 
key if the value used for reference in the 
comparison is actually Missing, i.e. the 
comparison reference point has Head that 
matches Missing.

Options for SeriesInternalCompare .
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We compare every value in each series to the healthy "255" time point, which is the second element in each series: 

In[85]:= rnaCompared = SeriesInternalComparetimeSeriesRNALog, ComparisonIndex → 2

Out[85]=

{FAM138A, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{OR4F5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{LOC729737, RNA} → {0.830556, 0, 1.54264, 1.49992, 1.60041, 0, 0.228935,

0.764385, 0.658653, 0, 0.94863, 0.838548, 1.41168, 1.33744, 0.374807},
{DDX11L1, RNA} → {0.314326, 0., -0.301545, -0.171011, -0.458154, -0.705162, -0.687943,

-0.289634, -0.823824, -0.35597, 0.00444068, 0.520314, -0.764652, 0.764095, 0.557328},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{LOC100507412, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{RNA45S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{DUX4L, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

large output show less show more show all set size limit...

Take the Norm and Remove Constant Transcriptome Time Series

Next, we normalize each series, using again SeriesApplier :

In[86]:= normedRNACompared = SeriesApplierNormalize, rnaCompared

Out[86]=

{FAM138A, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{OR4F5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{LOC729737, RNA} → {0.218293, 0., 0.40545, 0.39422, 0.420632, 0., 0.0601705,

0.200902, 0.173112, 0., 0.249326, 0.220394, 0.371029, 0.351517, 0.0985097},
{DDX11L1, RNA} → {0.156411, 0., -0.150051, -0.0850959, -0.22798, -0.350893, -0.342324,

-0.144124, -0.40994, -0.177133, 0.00220971, 0.258911, -0.380495, 0.380218, 0.27733},
⋯ 25 260⋯ , {RNA5-8S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{LOC100507412, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{RNA45S5, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{DUX4L, RNA} → {Missing[], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

large output show less show more show all set size limit...

ConstantSeriesClean[dataIn] removes constant list series from an association of lists.

Removing constant series.
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Finally, we use ConstantSeriesClean  to remove constant series, as we are interested in changing time patterns:

In[87]:= rnaFinalTimeSeries = ConstantSeriesClean[normedRNACompared]

Removed series and returning filtered
list. If you would like a list of removed keys run the
command ConstantSeriesClean[data,ReturnDropped → True].

Out[87]=

{LOC729737, RNA} → 0.218293, 0., 0.40545, 0.39422, 0.420632, 0., 0.0601705,
⋯ 20⋯ , 0.173112, 0., 0.249326, 0.220394, 0.371029, 0.351517, 0.0985097, ⋯ 11783⋯ 

large output show less show more show all set size limit...

Resampling Transcriptome Data

In  addition  to  the  above,  we  want  to  create  a  resampled  distribution  for  the  transcriptome  dataset  prior  to  classification  and  clustering.  In  this

subsection  we  first  resample  the  imported  and  labeled  transcriptome  dataset,  Then,  we  carry  out  the  full  analysis  in  this  "bootstrap"  dataset,  to

create a set of random time series. This bootstrap distribution of time series will be used to provide the cutoffs used in the time series classification in

the following subsection.

Resampling the Transcriptome Data

First, we use BootstrapGeneral :

BootstrapGeneral[
omicsObject, numberResampled]

performs a resampling of the omicsObject data with 
replacement, and generates a new association structure 
with numbering corresponding to the numberResampled of 
new identities.

We can perform resampling of an OmicsObject to create a bootstrap dataset to be used for statistical considerations.

We create a resampling of 100000 sets:

In[88]:= rnaBootstrap = BootstrapGeneralrnaLongitudinal, 100000

Out[88]=

186 → 1 → {{5.5402}, {OK}}, 2 → {{0}, {OK}}, 3 → {{0.00246625}, {OK}},
4 → {{12.7439}, {OK}}, 5 → {{0}, {OK}}, ⋯ 99990⋯ , 99996 → {{0.347246}, {OK}},
99 997 → {{12.2697}, {OK}}, 99998 → {{0}, {OK}}, 99999 → {{0}, {OK}}, 100 000 → {{0}, {OK}},

255 →  ⋯ 1⋯ , ⋯ 11⋯ , ⋯ 1⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing the Bootstrap Transcriptome and Creating Bootstrap Time Series

We normalize the transcriptome bootstrap data using the QuantileNormalization  function:

In[89]:= rnaBootstrapQuantileNormed = QuantileNormalizationrnaBootstrap, ListIndex → 1, ComponentIndex → 1;
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We use  LowValueTag  to tag zero values as Missing[]:

In[90]:= rnaBootstrapZeroTagged = LowValueTagrnaBootstrapQuantileNormed, 0;

We next use  LowValueTag  again to set all FPKM values <1 to unity:

In[91]:= rnaBootstrapNoiseAdjusted = LowValueTag[rnaBootstrapZeroTagged, 1, ValueReplacement → 1];

Next, we filter out data where the reference point "255" is missing and retain data with at least 3/4 points available:

In[92]:= rnaBootstrapFiltered = FilterMissingrnaBootstrapNoiseAdjusted, 3/4, Reference → "255"
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{Missing -> Counts: , /0 → 72929, 1 → 270710}

0
1

Out[92]=

186 → 1 → {{4.74683}, {OK}}, 2 → {{Missing[]}, {OK}}, 3 → {{1}, {OK}},
4 → {{11.6602}, {OK}}, ⋯ 99992⋯ , 99997 → {{11.2634}, {OK}}, 99998 → {{Missing[]}, {OK}},
99 999 → {{Missing[]}, {OK}}, 100000 → {{Missing[]}, {OK}}, ⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...
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For each bootstrap member we now extract a time series (list of values) corresponding to the series times:

In[93]:= timeSeriesBootstrapRNA = CreateTimeSeriesrnaBootstrapFiltered

Out[93]=

1 → {4.74683, 1, 204.567, 1, 1, 1, 3.21745, 6.86314, 1, 1, 1, 1, 1, 6.62081, 1.12378}, ⋯ 99998⋯ ,
100000 → {Missing[], 1, 1, 1, 1, 28.9646, 1, 1, 9.1248, 1, 1, 1, 1.01897, 18.9606, 1}

large output show less show more show all set size limit...

We use SeriesApplier  to implement a logarithm:

In[94]:= timeSeriesBootstrapRNALog = SeriesApplierLog, timeSeriesBootstrapRNA

Out[94]=

1 → {1.55748, 0, 5.32089, 0, 0, 0, 1.16859, 1.92616, 0, 0, 0, 0, 0, 1.89022, 0.116702}, ⋯ 99998⋯ ,
100000 → {Missing[], 0, 0, 0, 0, 3.36607, 0, 0, 2.211, 0, 0, 0, 0.0187912, 2.94236, 0}

large output show less show more show all set size limit...

We compare every value in each series to the healthy "255" time point, which is the second element in each series: 

In[95]:= rnaBootstrapCompared = SeriesInternalComparetimeSeriesBootstrapRNALog, ComparisonIndex → 2

Out[95]=

1 → {1.55748, 0, 5.32089, 0, 0, 0, 1.16859, 1.92616, 0, 0, 0, 0, 0, 1.89022, 0.116702}, ⋯ 99998⋯ ,
100000 → {Missing[], 0, 0, 0, 0, 3.36607, 0, 0, 2.211, 0, 0, 0, 0.0187912, 2.94236, 0}

large output show less show more show all set size limit...

Next, we normalize each series, using again SeriesApplier :

In[96]:= normedBootstrapRNACompared = SeriesApplierNormalize, rnaBootstrapCompared

Out[96]=

1 → {0.248127, 0., 0.84769, 0., 0., 0., 0.186172, 0.306864, 0., 0., 0., 0., 0., 0.301137, 0.0185922},
⋯ 99 998⋯ , 100000 → Missing[], 0., 0., 0., 0., ⋯ 5⋯ , 0., 0., 0.00376754, 0.589928, 0.

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean  to remove constant series, as we are interested in changing time patterns:

In[97]:= rnaBootstrapFinalTimeSeries = ConstantSeriesClean[normedBootstrapRNACompared]

Removed series and returning filtered
list. If you would like a list of removed keys run the
command ConstantSeriesClean[data,ReturnDropped → True].

Out[97]=

1 → {0.248127, 0., 0.84769, 0., 0., 0., 0.186172, 0.306864, 0., 0., 0., 0., 0., 0.301137, 0.0185922},
⋯ 99 965⋯ , 100000 → Missing[], 0., 0., 0., 0., ⋯ 5⋯ , 0., 0., 0.00376754, 0.589928, 0.

large output show less show more show all set size limit...
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Classification of Transcriptome Time Series

In  this  subsection  we  will  classify  the  transcriptome  time  series  based  on  patterns  in  the  series.  For  the  classification  we  will  use

TimeSeriesClassification . 

TimeSeriesClassification[data, setTimes] takes a data association (or list of lists) of values 
corresponding to intensities collected over time and 
classifies the values into classes (groups) that show 
distinct similar temporal patterns. 
TimeSeriesClassification takes as inputs:
data Association with series as values, 

or a list of series, where the 
series contain information 
regarding time 
intensities/observations. Each 
series may include Missing  data 
points and may be entered as list 
of N signal intensities 
corresponding one-to-one to 
the N setTimes with Missing  
inserted appropriately if the data 
is absent, {X1=X (t1),

X2=X (t2),...,
XN=X (tN)}

. 

Alternatively, each series data 
may be a list of pairs of values 
{{t1,X1},{t2,X2},. ..,{tN,XN}} for 
only existing measurements.

setTimes A global complete set of all 
possible N times during which all 
data series could have been 
collected in the window of the 
experiment, including times for 
which no values were reported 
or are missing, 
{t1, t2, ..., tN}.

Classifying a set of time series based on temporal behavior.

option name default value
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AutocorrelationCutoffs {0} Cutoffs, for "Autocorrelation" and 
"InterpolatedAutocorrelation" methods, 
for different lags that will be used to filter 
out data series for which the lags are not 
within cutoffs. The list length corresponds 
to cuttofs at different lags, with the ith lag 
cutoff provided as the ith index, i.e. 
ρc=ρc1,ρc2,,...,ρci,,..., ρjk up to k, where 
1 ≤ k ≤ n, and typically 
n = Floor[Length[setTimes]/2]. 
The classification will only consider lags up 
to the length of the list provided. The 
cutoffs are user-provided and typically 
calculated through simulation.

AutocorrelationLogic False Option to return the autocorrelation logic 
list for each signal, with the default set to 
False . If set to True, a logic vector is 
returned indicating whether or not at a 
particular lag the autocorrelation for a 
signal is above or below the 
AutocorrelationCutoffs.

AutocorrelationOptions UpperFrequencyFact-
or

→ 1

Options that are used by the internal 
Autocorrelation function in the case that  
the Method → "Autocorrelation" is 
set.

InterpolationDeltaT "Auto" Time step used to grid the time window 
over which calculations will be performed. 
If set to "Auto" the step will correspond to 
dividing the span of the interval into a 
number of equal steps equal to the 
number of input time points.

InterpolationOptions {} Options list for the internal Interpolation 
function used to interpolate between data 
points that have Missing values or 
uneven spacing.

LombScargleCutoff 0 Cutoff value for "LombScargle" method, 
for filtering the highest intensity observed 
in the power spectrum. The cutoff is user-
provided and typically calculated through 
simulation. 

Printed from the Complete Wolfram Language Documentation 26

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



Cutoff value for "LombScargle" method, 
for filtering the highest intensity observed 
in the power spectrum. The cutoff is user-
provided and typically calculated through 
simulation. 

LombScargleOptions {PairReturn→
False,

NormalizeIntens-
ities→ True}

Options that are used by the internal 
LombScargle function if the case that the 
Method → "LombScargle" is set.

Method "LombScargle" Selection of which algorithm to use in the 
classification scheme.

ReturnAllSpikes False Option whether each signal may maintain 
unique membership to each spike class, or 
be allowed to belong to multiple classes. 
Used in "Autocorrelation" and 
"InterpolatedAutocorrelation" methods. If 
set to False, first spike maxima are 
classified, and only signals found not to 
belong to spike maxima are then 
considered for membership in the spike 
minima class.

ReturnData True If set to True will return input keys to data 
associations in the classification. If set to 
False will only return the keys of the input 
data in the classification.

ReturnModels False Whether to return the models as well as 
the classification information for the input 
data. The data is returned as an 
association with the  key 
"TimeSeriesClasses" for classification 
groups and one of the following: (i) 
"Models" for model-based methods, (ii) 
"LombScargle" for periodograms in the 
"LombScargle" method, (iii) 
"Autocorrelations" for autocorrelation 
based methods.
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SpikeCutoffs <|1 →{.99,-99},
2 → {.99,-99}|>

Association with number, n, of data points 
as keys, and values corresponding to 
cutoffs, in the form 
<|n → {Maximum Spike Cutoffn,

Minimum Spike Cutoffn}|>
 

used to call spike maxima and minima for 
a time series with this number of 
datapoints. The values are provided by the 
user depending on data approach based 
on simulation. The default values are only 
place-holders and should be replaced by 
real values. The association must have 
corresponding keys for all lengths of input 
datasets, so that 
Keys[OptionValue[

SpikeCutoffs]] ∈
{Possible lengths of

numeric data}.

 ,  i.e. all 

possible lengths of series constructed by 
excluding Missing  or other non-numeric 
values).

Options for TimeSeriesClassification .

TimeSeriesClassification  uses multiple methods to classify data.  The periodogram/autocorrelation methods used use cutoffs from simulation/user-

provided values, to assess class membership based on statistical significance. In this tutorial we will use the "LombScargle" method, to classify data

based on a Lomb-Scargle computation of a periodogram. The data is classified based into classes major (highest intensity) frequencies based on the

generated periodogram for a signal, when the intensity of this frequency is above an intensity threshold cutoff. Additionally, data that displays spikey

behavior in the real intensity, that is not classified into any frequency classes, is classified as a SpikeMaximum or SpikeMinimum if the spike is higher

or lower respectively than what one would expect from a random signal.

Method Description

Printed from the Complete Wolfram Language Documentation 28

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



"LombScargle" Classification based on periodograms (power spectra) 
generated by a Lomb-Scargle computation as 
implemented internally by the LombScargle  function. The 
data is classified into classes of major (highest intensity)  
frequencies and spikes (maxima or minima in real signal 
intensity), depending on cutoffs typically provided by 
simulation and passed to the function by the 
LombScargleCutoffs and SpikeCutoffs option 
values. The returned {computed classification vector} for 
this method is the intensity list of the periodogram for 
each signal.

"Autocorrelation" Classification based on autocorrelations generated by a 
Lomb-Scargle approach using an inverser Fourier 
transform of spectral intensities, as implemented through 
the Autocorrelation  function. The data is classified into 
autocorrelations at different lags and spikes (maxima or 
minima) classes, depending on cutoffs typically provided 
by simulation. The returned {computed classification 
vector} for this method is the autocorrelation list for each 
signal.

"InterpolatedAutocorrelation" Classification based on autocorrelations generated 
directly in time, with Missing  data handled through 
interpolation. The data is classified into autocorrelations 
at different lags and spikes (maxima or minima) classes 
depending on cutoffs typically provided by simulation. 
The returned {computed classification  vector} for this 
method is the autocorrelation list for each signal.

"TimeSeriesModelAggregate" Classification based on model fitting of time series 
through TimeSeriesModelFit  and all available models 
therein. The data is classified into aggregate model 
classes. The returned {computed classification vector} for 
this method is the actual input signal.
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Classification based on model fitting of time series 
through TimeSeriesModelFit  and all available models 
therein. The data is classified into aggregate model 
classes. The returned {computed classification vector} for 
this method is the actual input signal.

"TimeSeriesModelDetailed" Classification based on model fitting of time series 
through TimeSeriesModelFit  and all available models 
therein. The data is classified into model classes based on 
individual model degree parameters.  The returned 
{computed classification vector} for this method is the 
"BestFitParameters" for the model fit. If this list is empty 
an integer list is returned {token integer} - this is used in 
subsequent clustering applications.

Methods for TimeSeriesClassification .

To create the cutoffs for the classification we will first use the bootstrap time series set created in the previous subsection, and QuantileEstimator .

QuantileEstimator[data, timepoints] obtains the quantile estimator following bootstrap for 
time series.  It takes as inputs:
      data Association or list with series 

as values, from which to 
generate a distribution.

      timepoints Timepoints over which the 
time series run.

Estimating  the quantile value that can be used as a cutoff for classification of time series based on bootstrap simulations.
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option name default value

AutocorrelationOptions {} Specific options when calculating 
autocorrelations for the time series.

InterpolationDeltaT "Auto" Time step used to grid the time window 
over which calculations will be performed. 
If set to "Auto" the step will correspond to 
dividing the span of the interval into a 
number of equal steps equal to the 
number of input time points.

InterpolationOptions {} Options list for the internal Interpolation 
function used to interpolate between data 
points that have Missing values or uneven 
spacing.

LombScargleOptions {PairReturn →
False,

NormalizeIntens-
ities→ True}

Specific options when calculating 
LombScargle periodograms for the time 
series.

Method "LombScargle" Method of calculation. Choices include one 
of the following: 
{"LombScargle","Autocorrelation", 
"InterpolatedAutocorrelation","Spikes"}

QuantileValue 0.95 Which quantile to extract.

Options for QuantileEstimator .

Depending  on  the  cutoffs  we  would  like  to  generate,  we  select  the  appropriate  Method  (also  considering  the  Method  that  the  downstream

TimeSeriesClassification  will use).
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Method Description

"Autocorrelation" List of values corresponding to selected quantile of 
autocorrelations, with the ith lag quantile provided as the 
ith index, i.e. ρc=ρc1,ρc2,,...,ρci,,..., ρck up to k lags, where 
1≤ k ≤ n, and typically n=Floor[Length[timepoints]/2].  The 
method utilizes the Autocorrelation  function internally.

"InterpolatedAutocorrelation" List of values corresponding to selected quantile for 
autocorrelations, with the ith lag quantile provided as the 
ith index, i.e. ρc=ρc1,ρc2,,...,ρci,,..., ρck up to k lags, where 
1≤ k ≤ n, and typically n=(Length[timepoints]-1). The 
method utilizes an Interpolation followed by a 
CorrelationFunction implementation to compute 
autocorrelations, i.e. missing data or uneven sampling is 
handled by data interpolation.

"LombScargle" Single value corresponding to selected quantile of 
maximum peak intensity of periodogram. The method 
utilizes the LombScargle  function internally.

"Spikes" Association with number, n, of data points as keys, and 
values corresponding to quantiles for maxima and minima 
of the series, in the form 
<|n → {Maximum Spike Quantilen,

Maximum Spike Quantilen}|>
 . The keys are 

generated automatically so that so that 
Keys[output] ∈

{Possible lengths of numeric data}.
 ,  i.e. all 

possible lengths of input series constructed by excluding 
Missing or other non-numeric values).

Method selection and output for QuantileEstimator .

The default  output  for  TimeSeriesClassification  is  an Association  with outer  keys  being the classification classes,   inner  keys being the class  mem-

bers,  and  each  class  member  value  being  a  list  of  {{computed classification vector}, {input data list}}.  The  general  output

structure is for M output classes of each having mi members: 

<| Class1 → <|Member11 → {{classification vector11}, {input data vector11}},
Member12 → {{classification vector12}, {input data vector12}}, ...,
Member1 m1 → {{classification vector1 m1}, {input data vector1 m1}}|>,

Class2 → <|Member21 -> {{classification vector21}, {input data vector21}},
Member22 -> {{classification vector22}, {input data vector22}}, ...,
Member2 m2 → {{classification vector2 m2}, {input data vector2 m2}}|>, ...,

ClassM → <|MemberM1 -> {{classification vectorM1}, {input data vectorM1}},
MemberM2 -> {{classification vectorM2}, {input data vectorM2}}, ...,
MemberMmM → {{classification vectorMmM}, {input data vectorMmM}}|>|>
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Before we classify our transcriptome data, we estimate for the "LombScargle" Method a 0.95 quantile cutoff from the bootstrap transcriptome data:

In[263]:= q95RNA = QuantileEstimatorrnaBootstrapFinalTimeSeries, timesRNA

0.860232

Next, we estimate the "Spikes" 0.95 quantile cutoff from the bootstrap transcriptome data:

In[264]:= q95RNASpikes = QuantileEstimatorrnaBootstrapFinalTimeSeries, timesRNA, Method → "Spikes"

Out[264]= /14 → {0.884016, -0.348069}, 15 → {0.858813, -0.337635}0

Now we can classify the transcriptome time series data based on these cutoffs:

In[265]:= rnaClassification = TimeSeriesClassificationrnaFinalTimeSeries,
timesRNA, LombScargleCutoff → q95RNA, SpikeCutoffs → q95RNASpikes

Method → "LombScargle"

Out[265]=

SpikeMax → {ATAD3C, RNA} → {0.0855374, 0.204135, 0.219303, 0.378496, 0.5849, 0.346012, 0.545735},
0., 0., 0., 0., ⋯ 7⋯ , 0., 0., 0.075919, 0., ⋯ 821⋯ , ⋯ 7⋯ , f7 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

The default output for TimeSeriesClassification is an Association with outer keys being the classification classes,  inner keys being the class members,

and each class member value being a list of {{computed classification vector}, {input data list}}. The general output structure is

for M output classes of each having mi members: 

<| Class1 → <|Member11 → {{classification vector11}, {input data vector11}},
Member12 → {{classification vector12}, {input data vector12}}, ...,
Member1 m1 → {{classification vector1 m1}, {input data vector1 m1}}|>,

Class2 → <|Member21 -> {{classification vector21}, {input data vector21}},
Member22 -> {{classification vector22}, {input data vector22}}, ...,
Member2 m2 → {{classification vector2 m2}, {input data vector2 m2}}|>, ...,

ClassM → <|MemberM1 -> {{classification vectorM1}, {input data vectorM1}},
MemberM2 -> {{classification vectorM2}, {input data vectorM2}}, ...,
MemberMmM → {{classification vectorMmM}, {input data vectorMmM}}|>|>

If we want the classes produced, we can query the keys:

In[101]:= KeysrnaClassification

Out[101]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7

For the number of members in each class we have:

In[266]:= Query[All, Length]@rnaClassification

Out[266]= SpikeMax → 822, SpikeMin → 5963, f1 → 116, f2 → 3, f3 → 30, f4 → 128, f5 → 35, f6 → 13, f7 → 61
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We can obtain the membership list in any class of interest:

In[267]:= Query"f1", Keys@rnaClassification

Out[267]= {PADI4, RNA}, {AHDC1, RNA}, {CCDC28B, RNA}, {AGO1, RNA}, {JAK1, RNA}, C1orf52, RNA, {IARS2, RNA},
{URB2, RNA}, {HSPA14, RNA}, {WBP1L, RNA}, {PDZD8, RNA}, {LOC102288414, RNA}, {TRMT112, RNA},
{DRAP1, RNA}, {CDK2AP2, RNA}, {FAM168A, RNA}, {FLI1, RNA}, {EFCAB4B, RNA}, {EMG1, RNA}, {NDUFA12, RNA},
{ELK3, RNA}, {SSH1, RNA}, C12orf49, RNA, {IPO5, RNA}, {TMCO3, RNA}, {KIAA0586, RNA}, {JKAMP, RNA},
{PCNX, RNA}, {EHD4, RNA}, {CLPX, RNA}, {AAGAB, RNA}, {RCCD1, RNA}, {FAM173A, RNA}, {LINC00921, RNA},
{ZC3H7A, RNA}, {GLG1, RNA}, {MBTPS1, RNA}, {TNFRSF13B, RNA}, {ZNF207, RNA}, {ACLY, RNA}, {PSME3, RNA},
{TEX2, RNA}, {PRKCA, RNA}, {ATP9B, RNA}, {MBP, RNA}, {ADNP2, RNA}, {HOOK2, RNA}, {EMR3, RNA},
{SDHAF1, RNA}, {ZNF529, RNA}, {RPL18, RNA}, {CTU1, RNA}, {GEMIN6, RNA}, {GMCL1, RNA}, {COA5, RNA},
{MRPS9, RNA}, {GTF3C3, RNA}, {NDUFS1, RNA}, {RALGAPA2, RNA}, {LOC284801, RNA}, {SAMHD1, RNA},
{SERINC3, RNA}, {USP25, RNA}, {RUNX1, RNA}, {DSCR3, RNA}, {THAP7, RNA}, {MAPK1, RNA}, {PITPNB, RNA},
{EWSR1, RNA}, {NPTXR, RNA}, {TCF20, RNA}, {ARPC4, RNA}, {STT3B, RNA}, {SNRK-AS1, RNA}, {CCDC12, RNA},
{PRKAR2A, RNA}, {GSK3B, RNA}, {PTPLB, RNA}, {DNAJC13, RNA}, {LRCH3, RNA}, {KLF3, RNA}, {ANTXR2, RNA},
{GPRIN3, RNA}, {INPP4B, RNA}, {PTGER4, RNA}, {NNT, RNA}, {CCDC125, RNA}, {POC5, RNA}, {ERAP1, RNA},
{TBC1D22B, RNA}, {HACE1, RNA}, {SYNJ2, RNA}, {CYTH3, RNA}, {STAG3L1, RNA}, {STAG3L3, RNA},
{MTERF, RNA}, {MBLAC1, RNA}, {TRIM56, RNA}, {AHCYL2, RNA}, {RNF122, RNA}, {ADAM9, RNA}, {PRKDC, RNA},
{AGO2, RNA}, {ERMP1, RNA}, {KDM4C, RNA}, {FOCAD, RNA}, {CEP78, RNA}, {RC3H2, RNA}, {GTF3C4, RNA},
{ZRSR2, RNA}, {PDK3, RNA}, {CASK, RNA}, {DDX3X, RNA}, {TIMP1, RNA}, {ARHGEF6, RNA}, {IDS, RNA}

We may also want to know what these frequencies correspond to. The "LombScargle" method uses a LombScargle  transformation.
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LombScargle[data, setTimes] calculates the Lomb-Scargle power spectrum for time 
series data that runs over specified setTimes. It takes as 
input:
      data Time series (data as a list; list 

may be the value of a single 
key in an association). The 
series may include Missing 
data points. Data may be 
entered as list of N signal 
intensities corresponding one-
to-one to the N setTimes with 
Missing inserted appropriately 
if the data is absent, 
{X1=X (t1),

X2=X (t2),...,
XN=X (tN)}

. 

Alternatively, the data may be 
a list of pairs of values 
{{t1,X1},{t2,X2},. ..,{tN,XN}} for 
only existing measurements.

      setTimes A complete set of all possible N 
times during which data could 
have been collected in the 
window of the experiment, 
including times for which no 
data was 
collected,
{t1, t2, ..., tN}.

Calculating the power spectrum of a (possibly unevenly sampled) time series.
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option name default value

FrequenciesOnly False Whether to return only the computation 
frequencies. An association of frequencies 
"f" ordered from low to high by index i is 
returned in the form:
<|"f1" → frequency1,

"f2" → frequency2, ...,
"fi" → frequencyi,..., "fn" →

frequencyn|>

NormalizeIntensities False Whether the intensities list should be 
normalized or not.

OversamplingRate 1 Rate at which to oversample the time 
series using zero-padding.

PairReturn False Whether data should be returned as 
{frequency list,intensity list} or as pairs: 
{{frequency1,intensity1}, {frequency2, 
intensity2},...,{frequencyN,intensityN}.

UpperFrequencyFactor 1 Value ≥ 1,  by which to scale the upper 
Nyquist cutoff frequency and increase 
spectral resolution. 

Options for LombScargle .

To obtain the possible frequencies we simply run LombScargle  over the desired times for one of the time series and set the FrequenciesOnly option 

to True :

In[104]:= LombScarglernaFinalTimeSeries[[1]], timesRNA, FrequenciesOnly → True

Out[104]= f1 → 0.00500668, f2 → 0.0104306, f3 → 0.0158545,
f4 → 0.0212784, f5 → 0.0267023, f6 → 0.0321262, f7 → 0.0375501

Proteomic Data

Importing OmicsObject Proteome Data

We  now  import  the  proteomics  data  example  (for  details  on  how  to  import  such  data  please  refer  to  DataImporter ,  DataImporterDirect ,

DataImporterDirectLabeled  and OmicsObjectCreator  documentation).
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We import the proteomics OmicsObject MathIOmica example:

In[105]:= proteinExample = GetFileNameJoinConstantMathIOmicaExamplesDirectory, "proteinExample"

Out[105]=

7 → {A0AVT1, Protein} → {{0.937}, {17}}, {A0FGR8, Protein} → {{1.073}, {24}},
{A0MZ66, Protein} → {{1.059}, {9}}, ⋯ 5219⋯ , {Q9Y6I4, Protein} → Missing[],
{Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[],

9 →  ⋯ 1⋯ , ⋯ 9⋯ , 20 → ⋯ 1⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

There are multiple samples given by the outer associations. We can use Query to get any data. For example we can get the outer keys:

In[106]:= Query[Keys]@proteinExample

Out[106]= {7, 9, 10, 11, 14, 12, 13, 15, 16, 17, 19, 20, 21}

We  notice  that  sample  8  is  missing  -  this  is  because  it  was  used  as  a  reference  in  the  proteomics  experiment.  Point  18  is  missing  as  there  was  no

sample for that time point. We will address this in the next section.

We can get the expression raw data from any sample and entry. For example, the 14th and 214th entries in sample 12:

In[107]:= Query["12", {14, 22}]@proteinExample

Out[107]= /{A5PLN9, Protein} → {{1.057}, {3}}, {A6NGU5, Protein} → Missing[]0

The  keys  correspond  to  UniProt  accessions,  and  have  been  tagged  with  a  "Protein"  label  as  well.  The   values  of  all  the  keys/IDs  correspond  to

{{measurements}, {metadata}},  and  in  this  particular  example:

{{relative intensity compared to reference}, {number of unique peptides identified for the given protein}}. 

The measurement for each protein is a relative intensity, i.e. the ratio of the value for the protein compared to the reference timepoint that has been

chosen as the healthy sample "8", day "255" (in the experiment this was TMT reporter with 126 amu). The last list, the "metadata", in the proteomics

OmicsObject was chosen to be the number of unique peptides identified for the given protein.

Additional Information: Gene Translation

As an aside,  let  us consider the form of  the protein identifiers.  MathIOmica can perform basic GeneTranslation  going from one kind of  identifier  to

another, using GetGeneDictionary :
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GeneTranslation[inputIDList,
targetIDList,geneDictionary]

uses geneDictionary to convert inputIDList IDs to different 
annotations as indicated by targetIDList. It takes for 
inputs:
inputIDList List of n IDs (strings) to be 

converted in the form 
{inputID1,

inputID2, ...,
inputIDn}

targetIDList List of target identifier strings, as 
used in the gene 
geneDictionary,

{target ID1,
targetID2, ...

target IDk}

, e.g. 

{"UniProt ID","Gene Symbol"}. 
Can also be provided as a single 
string for only one kind of IDs.

geneDictionary Gene dictionary to base 
translation on in the form 
generated by GetGeneDictionary .

GetGeneDictionary[] creates an ID/accession dictionary from a UCSC table 
search - typically of gene annotations. GetGeneDictionary 
uses MathIOmica data for the annotations..

Translating gene identifiers using a gene dictionary.

We use GetGeneDictionary to define a gene dictionary:

In[108]:= geneDictionary = GetGeneDictionary[]

Out[108]=

human → UCSC ID → uc001aaa.3, uc010nxr.1, uc010nxq.1, uc001aal.1, uc001aaq.2, uc001aar.2,
uc001aau.3, uc021oeh.1, ⋯ 121567⋯ , uc022cfk.1, uc031tkn.1, uc022cgh.1, uc022cha.1,
uc022chb.1, uc022chc.1, uc022che.1, uc022cpe.1, ⋯ 6⋯ , HGU… x ID → ⋯ 1⋯ 

large output show less show more show all set size limit...
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The current version of the gene dictionary has accessions for the following identifiers:

In[109]:= Query[All, Keys]@geneDictionary

Out[109]= human → UCSC ID, UniProt ID, Gene Symbol, RefSeq ID,
NCBI Protein Accession, Ensembl ID, KEGG Gene ID, HGU133Plus2 Affymetrix ID

We can now use GeneTranslation (setting the optional InputID to "UniProt ID") to convert our example "UniProt ID" accessions to "Gene Symbol":

In[110]:= GeneTranslation{"A5PLN9", "A6NGU5"}, {"Gene Symbol"}, geneDictionary, InputID → "UniProt ID"

Out[110]= /Gene Symbol → /A5PLN9 → {TRAPPC13}, A6NGU5 → Missing[]00

We note that an ID might not necessarily be annotated across all databases, as in the above example.

Processing of Proteome Data

We will next preprocess the imported proteome data. We will first perform a transformation on the data towards a normal distribution, then we will

re-label  the  samples  with  real  time  and  carry  out  filtering  for  unique  peptides  present  in  each  protein  identification,  as  well  as  for  missing  data.

Finally, we will create the proteomics time series or relative intensities compared to the healthy reference point for each protein.

Power Transformation, Labeling and Filtering

Data Power Transformation

To make the data comparable across time points,  and as close to a normal distribution as possible for each sample, we normalize each time point

/sample by using ApplyBoxCoxTransform .

ApplyBoxCoxTransform[data] for a given data set, computes the Box-Cox transformation 
at the maximum likelihood λ parameter.

Applying a power transformation (Box-Cox) for an optimized parameter for each dataset.

option name default value

ListIndex Missing[] Selection of which list to use in the 
OmicsObject input.

ComponentIndex Missing[] Selection of which component of a list to 
use in the OmicsObject input.

HorizontalSelection False Horizontal selection across components 
for a single level association with multi-list 
values.

Options for ApplyBoxCoxTransform .

We apply a Box-Cox transformation to the proteomics data measurement in the OmicsObject, which is in the first list first component for each identifier. 

The optimized λ
=

 parameter for each sample is printed out for reference:

In[111]:= transformedProteinData = ApplyBoxCoxTransformproteinExample, ListIndex → 1, ComponentIndex → 1
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Calculated Box-Cox parameter λ
=

= -0.152638

Calculated Box-Cox parameter λ
=

= -0.177086

Calculated Box-Cox parameter λ
=

= -0.421581

Calculated Box-Cox parameter λ
=

= -0.292287

Calculated Box-Cox parameter λ
=

= -0.432042

Calculated Box-Cox parameter λ
=

= 0.346673

Calculated Box-Cox parameter λ
=

= 0.368061

Calculated Box-Cox parameter λ
=

= 0.0834074

Calculated Box-Cox parameter λ
=

= 0.13413

Calculated Box-Cox parameter λ
=

= 0.166336

Calculated Box-Cox parameter λ
=

= 0.0866284

Calculated Box-Cox parameter λ
=

= -0.199247

Calculated Box-Cox parameter λ
=

= -0.221778

Out[111]=

7 → {A0AVT1, Protein} → {{-0.0653962}, {17.}}, {A0FGR8, Protein} → {{0.0700809}, {24.}},
⋯ 5221⋯ , {Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[],

⋯ 11⋯ , 21 → {A0AVT1, Protein} → - ⋯ 21⋯ , ⋯ 1⋯ , ⋯ 5223⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can plot the data to see what the resulting distributions look like:

In[112]:= Histogram[#] & /@ Query[All, Values, 1, 1]@transformedProteinData

Out[112]= 7 → , 9 → , 10 → ,

11 → , 14 → , 12 → ,

13 → , 15 → , 16 → , 17 → ,

19 → , 20 → , 21 → 
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Re-labeling Samples with Times

As with the transcriptome, we notice that the sample numberings do not correspond to actual days, so we may adjust using the sampleToDays 
association created before and reproduced here for reference:

In[113]:= sampleToDays =
3"7" → "186", "8" → "255", "9" → "289", "10" → "290", "11" → "292", "12" → "294", "13" → "297", "14" → "301",
"15" → "307", "16" → "311", "17" → "322", "18" → "329", "19" → "369", "20" → "380", "21" → "400"4;

We can now do a KeyMap to rename the outer keys:

In[114]:= proteinLongitudinal = KeyMapsampleToDays, transformedProteinData

Out[114]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, {A0MZ66, Protein} → {{0.057075}, {9.}}, ⋯ 5220⋯ ,
{Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[], ⋯ 11⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Now let's check the timepoints in this dataset:

In[115]:= timesProteinRawData = TimeExtractorproteinLongitudinal

Out[115]= {186, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380, 400}

We notice a small complication: there are two timepoints missing, compared to the transcriptome: (i) the reference time point "255" does not appear

explicitly in our computation (corresponding to a zero value about which other timepoints are computed for proteins with at least 2 unique peptides).

(ii) there is no sample for day "329". 

We can use the ConstantAssociator  function to append these to the transformed data. Timepoints "255" (zero measurement assumed to have at least 2 
unique peptides available per protein) and "329", assumed to be Missing data:

In[116]:= proteinLongitudinalEnlarged =
ConstantAssociatorproteinLongitudinal, <|"255" → {{0}, {2}}, "329" → Missing[]|>

Out[116]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, {A0MZ66, Protein} → {{0.057075}, {9.}}, ⋯ 5220⋯ ,
{Q9Y6I9, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[], ⋯ 13⋯ , 329 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now check the timepoints again:

In[117]:= timesProtein = TimeExtractorproteinLongitudinalEnlarged

Out[117]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

Filter Unique Peptides

Typically,  proteomics  data  from  mass  spectrometry  is  filtered  to  retain  only  identifications  of  proteins  that  are  supported  by  at  least  2  unique

peptides having been identified per protein. We can use FilteringFunction  to implement the filtering:
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FilteringFunction[omicsObject, cutoff] filters OmicsObject data by a chosen comparison (by 
default greatr or equal) to a cutoff .

FilteringFunction can be used to filter data in an OmicsObject.

option name default value

ListIndex Missing[] Selection of which list to use in the 
OmicsObject input.

ComponentIndex Missing[] Selection of which component of a list to 
use in the OmicsObject input.

SelectionFunction GreaterEqual Selection of comparison to use for filtering.

Options for FilteringFunction .

We filter out proteomics data with less than 2 unique peptides per protein. The unique peptides is reported as the second list, first component in the 
OmicsObject values in this case:

In[118]:= proteinUnique = FilteringFunctionproteinLongitudinalEnlarged, 2, ListIndex → 2, ComponentIndex → 1

Out[118]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, {A0MZ66, Protein} → {{0.057075}, {9.}}, ⋯ 5220⋯ ,
{Q9Y616, Protein} → Missing[], {Q9Y6X3, Protein} → Missing[], ⋯ 13⋯ , 329 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Filter Data

We will next remove values that have been tagged as Missing[], retaining data that have at least 3/4 data points available across all samples. Here we

use the function FilterMissing :

In[119]:= filteredProteinData = FilterMissingproteinUnique, 3/4
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{Missing -> Counts: , /1 → 2475, 5 → 443, 6 → 143, 9 → 499, 10 → 345, 14 → 13200}

1
5
6
9
10
14

Out[119]=

186 → {A0AVT1, Protein} → {{-0.0653962}, {17.}},
{A0FGR8, Protein} → {{0.0700809}, {24.}}, ⋯ 2471⋯ , {Q9Y6W5, Protein} → {{-0.0514946}, {14.}},
{Q9Y6Y8, Protein} → {{-0.026397}, {10.}}, ⋯ 13⋯ , 329 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Create Proteome Time Series

We can now create time series for each of the proteins. 
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For each protein we now extract a time series (list of values) corresponding to these times:

In[120]:= timeSeriesProtein = CreateTimeSeriesfilteredProteinData

Out[120]=

{A0AVT1, Protein} → -0.0653962, 0, 0.00299471, -0.0348449, -0.0182123, 0.0627073, ⋯ 3⋯ ,
0.0829594, 0.0689856, Missing[], -0.050132, -0.137674, -0.0120888, ⋯ 2473⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Take the Norm and Remove Constant Proteome Time Series

Next, we normalize each protein series, using SeriesApplier :

In[121]:= normedProteinAll = SeriesApplierNormalize, timeSeriesProtein

Out[121]=

{A0AVT1, Protein} → {-0.205122, 0., 0.00939321, -0.109294, -0.0571245, 0.196687, 0.529638,
0.0740093, -0.539241, 0.26021, 0.21638, Missing[], -0.157244, -0.431828, -0.0379175},

⋯ 2473⋯ , {Q9Y6Y8, Protein} → -0.0502772, 0., 0.0961208, 0.0848518, 0.207372,
0.188143, ⋯ 3⋯ , 0.134835, -0.133348, Missing[], -0.185135, 0., -0.369519

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean  to remove constant series, as we are interested in changing time patterns:

In[122]:= proteinFinalTimeSeries = ConstantSeriesCleannormedProteinAll

Out[122]=

{A0AVT1, Protein} → {-0.205122, 0., 0.00939321, -0.109294, -0.0571245, 0.196687, 0.529638,
0.0740093, -0.539241, 0.26021, 0.21638, Missing[], -0.157244, -0.431828, -0.0379175},

⋯ 2473⋯ , {Q9Y6Y8, Protein} → -0.0502772, 0., 0.0961208, 0.0848518, 0.207372,
0.188143, ⋯ 3⋯ , 0.134835, -0.133348, Missing[], -0.185135, 0., -0.369519

large output show less show more show all set size limit...

Resampling Proteome Data

In addition to the above, we want to create a resampled distribution for the proteome dataset prior to classification and clustering. In this subsection

we  first  resample  the  imported  and  labeled  proteome  dataset,  Then,  we  carry  out  the  full  analysis  in  this  "bootstrap"  dataset,  to  create  a  set  of

random proteome time series. This bootstrap distribution of time series will be used to provide the cutoffs used in the time series classification in the

following subsection.

Resampling the Proteome Data

We create a resampling of 100000 sets:
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In[123]:= proteinBootstrap = BootstrapGeneralproteinExample, 100 000

Out[123]=

7 → 1 → {{1.061}, {1}}, 2 → {{1.053}, {10}}, 3 → Missing[],
4 → {{1.13}, {8}}, 5 → Missing[], 6 → {{0.888}, {1}}, 7 → Missing[], ⋯ 99987⋯ ,
99 995 → {{1.027}, {15}}, 99996 → {{0.926}, {6}}, 99997 → Missing[], 99998 → {{0.993}, {1}},
99 999 → Missing[], 100000 → {{1.325}, {1}}, ⋯ 11⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing the Bootstrap Proteome and Creating Bootstrap Time Series

We apply a Box-Cox transformation to the bootstrap set proteomics data measurement in the OmicsObject, which is in the first list first component for 

each identifier. The optimized λ
=

 parameter for each sample is printed out for reference:

In[124]:= transformedProteinBootstrapData = ApplyBoxCoxTransformproteinBootstrap, ListIndex → 1, ComponentIndex → 1

Calculated Box-Cox parameter λ
=

= -0.150171

Calculated Box-Cox parameter λ
=

= -0.222817

Calculated Box-Cox parameter λ
=

= -0.368798

Calculated Box-Cox parameter λ
=

= -0.28793

Calculated Box-Cox parameter λ
=

= -0.47914

Calculated Box-Cox parameter λ
=

= 0.340883

Calculated Box-Cox parameter λ
=

= 0.366836

Calculated Box-Cox parameter λ
=

= 0.0673515

Calculated Box-Cox parameter λ
=

= 0.13962

Calculated Box-Cox parameter λ
=

= 0.156325

Calculated Box-Cox parameter λ
=

= 0.100479

Calculated Box-Cox parameter λ
=

= -0.186707

Calculated Box-Cox parameter λ
=

= -0.215203

Out[124]=

7 → 1 → {{0.0589494}, {1.}}, 2 → {{0.0514435}, {10.}}, 3 → Missing[], 4 → {{0.121103}, {8.}},
5 → Missing[], ⋯ 99991⋯ , 99997 → Missing[], 99998 → {{-0.00702832}, {1.}},
99 999 → Missing[], 100000 → {{0.275549}, {1.}}, ⋯ 11⋯ , 21 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now do a KeyMap to rename the outer keys to actual days:

In[125]:= proteinBootstrapLongitudinal = KeyMapsampleToDays, transformedProteinBootstrapData;

Now let's check the timepoints in this dataset:

In[126]:= timesProteinBootstrapData = TimeExtractorproteinBootstrapLongitudinal

Out[126]= {186, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380, 400}

Printed from the Complete Wolfram Language Documentation 45

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



As with the regular protein data above use the ConstantAssociator  function to append these to the transformed bootstrap data. Timepoints "255" (zero 
measurement assumed to have at least 2 unique peptides available per protein) and "329", assumed to be Missing data:

In[127]:= proteinBootstrapLongitudinalEnlarged =
ConstantAssociatorproteinBootstrapLongitudinal, <|"255" → {{0}, {2}}, "329" → Missing[]|>;

We can now check the timepoints again:

In[128]:= timesProteinBootstrap = TimeExtractorproteinBootstrapLongitudinalEnlarged

Out[128]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

We filter out proteomics bootstrap data with less than 2 unique peptides per protein. The unique peptides is reported as the second list, first component 
in the OmicsObject values in this case:

In[129]:= proteinBootstrapUnique =
FilteringFunctionproteinBootstrapLongitudinalEnlarged, 2, ListIndex → 2, ComponentIndex → 1

Out[129]=

186 →

2 → {{0.0514435}, {10.}}, 4 → {{0.121103}, {8.}}, 8 → {{0.0746855}, {4.}}, 9 → {{-0.150168}, {14.}},
⋯ 99992⋯ , 88851 → Missing[], 47564 → Missing[], 39785 → Missing[], 81335 → Missing[],

⋯ 13⋯ , 329 → 2 → Missing[], ⋯ 99998⋯ , 81335 → ⋯ 1⋯ 

large output show less show more show all set size limit...

We  will  next  remove  values  that  have  been  tagged  as  Missing[],  retaining  data  that  have  at  least  3/4  data  points  available  across  all  bootstrap

samples. Here we use the function FilterMissing :

In[130]:= filteredProteinBootstrapData = FilterMissingproteinBootstrapUnique, 3/4
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{Missing -> Counts: , /1 → 142, 2 → 1220, 3 → 5012, 4 → 11693, 5 → 18728,
6 → 22396, 7 → 19536, 8 → 12532, 9 → 5943, 10 → 2117, 11 → 573, 12 → 96, 13 → 120}

1
2
3
4
5
6
7
8

9
10
11
12
13

Out[130]=

186 → 10 → {{-0.0440973}, {15.}}, 15 → {{0.0982086}, {2.}},
83 → {{0.260952}, {4.}}, 131 → {{-0.0578792}, {3.}}, ⋯ 6366⋯ ,
88 885 → Missing[], 91871 → Missing[], 92952 → Missing[], 96125 → Missing[],

⋯ 13⋯ , 329 → 10 → ⋯ 1⋯ , ⋯ 6372⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...
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For each bootstrap protein we now extract a time series (list of values):

In[131]:= timeSeriesProteinBootstrap = CreateTimeSeriesfilteredProteinBootstrapData

Out[131]=

 ⋯ 1⋯ 

large output show less show more show all set size limit...

Next, we normalize each protein series, using SeriesApplier :

In[132]:= normedProteinBootstrapAll = SeriesApplierNormalize, timeSeriesProteinBootstrap

Out[132]=

10 → -0.031448, 0., 0.0640716, -0.115008, 0.0203035, -0.0586266, -0.0237844, ⋯ 20⋯ , - ⋯ 19⋯ ,
-0.0629589, -0.17116, Missing[], 0.717319, Missing[], 0.374911, ⋯ 6372⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean  to remove constant series, as we are interested in changing time patterns:

In[133]:= proteinBootstrapFinalTimeSeries = ConstantSeriesCleannormedProteinBootstrapAll

Out[133]=

10 → -0.031448, 0., 0.0640716, -0.115008, 0.0203035, -0.0586266, -0.0237844, ⋯ 20⋯ , - ⋯ 19⋯ ,
-0.0629589, -0.17116, Missing[], 0.717319, Missing[], 0.374911, ⋯ 6372⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Classification of Proteome Time Series

In this subsection we will classify the proteome time series based on patterns in the series. For the classification we will use TimeSeriesClassification .

We will use QuantileEstimator  for the "LombScargle" method to provide a cutoff for the TimeSeriesClassification  inputs.

First, we estimate for the "LombScargle" Method, 0.95 quantile cutoff from the bootstrap proteome data:

In[268]:= q95Protein = QuantileEstimatorproteinBootstrapFinalTimeSeries, timesProteinBootstrap

Out[268]= 0.835064

Next, we estimate the "Spikes" 0.95 quantile cutoff from the bootstrap proteome data:

In[270]:= q95ProteinSpikes =
QuantileEstimatorproteinBootstrapFinalTimeSeries, timesProteinBootstrap, Method → "Spikes"

Out[270]= /12 → {0.804265, -0.838055}, 13 → {0.802793, -0.81749}, 14 → {0.787772, -0.821609}0
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Now we can classify the proteome time series data based on these cutoffs:

In[271]:= proteinClassification = TimeSeriesClassificationproteinFinalTimeSeries,
timesProtein, LombScargleCutoff → q95Protein, SpikeCutoffs → q95ProteinSpikes

Method → "LombScargle"

Out[271]=

 ⋯ 1⋯ 

large output show less show more show all set size limit...

As discussed above, the default output for TimeSeriesClassification  is an Association with outer keys being the classification classes,  inner keys

being the class members, and each class member value being a list of {{computed classification vector}, {input data list}}. 

If we want the classes produced, we can query the keys:

In[137]:= KeysproteinClassification

Out[137]= SpikeMax, SpikeMin, f1, f5, f6, f7

For the number of members in each class we have:

In[272]:= Query[All, Length]@proteinClassification

Out[272]= SpikeMax → 124, SpikeMin → 48, f1 → 77, f5 → 7, f6 → 36, f7 → 18

We can obtain the membership list in any class of interest:

In[273]:= Query"f1", Keys@proteinClassification

Out[273]= {{O00160, Protein}, {O00267, Protein}, {O00273, Protein}, {O00571, Protein},
{O15031, Protein}, {O43143, Protein}, {O43175, Protein}, {O43312, Protein},
{O43516, Protein}, {O60271, Protein}, {O60879, Protein}, {O75643, Protein},
{O75792, Protein}, {O95498, Protein}, {P00488, Protein}, {P00915, Protein}, {P02042, Protein},
{P02671, Protein}, {P04844, Protein}, {P08174, Protein}, {P09326, Protein}, {P09496, Protein},
{P11021, Protein}, {P12956, Protein}, {P13501, Protein}, {P13611, Protein}, {P13667, Protein},
{P19387, Protein}, {P23141, Protein}, {P23368, Protein}, {P32119, Protein}, {P32189, Protein},
{P33176, Protein}, {P40306, Protein}, {P42892, Protein}, {P50225, Protein}, {P51531, Protein},
{P52888, Protein}, {P54920, Protein}, {P55036, Protein}, {P60660, Protein}, {P84095, Protein},
{Q01518, Protein}, {Q07021, Protein}, {Q08722, Protein}, {Q09666, Protein}, {Q13151, Protein},
{Q13217, Protein}, {Q13488, Protein}, {Q14165, Protein}, {Q14643, Protein}, {Q14653, Protein},
{Q15084, Protein}, {Q5H9R7, Protein}, {Q6NYC8, Protein}, {Q709C8, Protein}, {Q86YP4, Protein},
{Q92499, Protein}, {Q96AT9, Protein}, {Q96L92, Protein}, {Q96RT1, Protein}, {Q99439, Protein},
{Q9BTE3, Protein}, {Q9BTV4, Protein}, {Q9BWS9, Protein}, {Q9C0I1, Protein}, {Q9H0D6, Protein},
{Q9H2U2, Protein}, {Q9H444, Protein}, {Q9H4Z3, Protein}, {Q9NS69, Protein}, {Q9NUP9, Protein},
{Q9NVJ2, Protein}, {Q9NYB0, Protein}, {Q9UQ35, Protein}, {Q9Y277, Protein}, {Q9Y2Q0, Protein}}

To obtain the possible frequencies we simply run LombScargle  over the desired times for one of the time series and set the FrequenciesOnly option 

to True :

In[140]:= LombScargleproteinFinalTimeSeries[[1]], timesRNA, FrequenciesOnly → True

Out[140]= f1 → 0.00500668, f2 → 0.0104306, f3 → 0.0158545,
f4 → 0.0212784, f5 → 0.0267023, f6 → 0.0321262, f7 → 0.0375501
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Metabolomic Data

Importing OmicsObject Metabolome Data

We  now  import  the  metabolomics  data  example  (for  details  on  how  to  import  such  data  please  refer  to  DataImporter ,  DataImporterDirect ,

DataImporterDirectLabeled  and OmicsObjectCreator  documentation).

We import the metabolomics OmicsObject MathIOmica examples for each of positive and negative mass spectrometry aligned mass features:

In[141]:= metabolitesNegativeModeExample =
GetFileNameJoinConstantMathIOmicaExamplesDirectory, "metabolomicsNegativeModeExample"

Out[141]=

8 → {457.002, 0.34764, Meta} →

{23444, 16317, 1},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 2289⋯ , {421.948, 0.392875, Meta} → {1, 115528, 130 042},
 [ C11 H12 Cl2 O11 S, db=0.00, overall=48.58, mfg=97.17 ], , ⋯ 10⋯ , 20 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

In[142]:= metabolitesPositiveModeExample =
GetFileNameJoinConstantMathIOmicaExamplesDirectory, "metabolomicsPositiveModeExample"

Out[142]=

8 → {202.033, 0.332607, Meta} → {{263741, 276 622, 337241}, {, }},
{174.038, 0.334514, Meta} → {{78435, 88529, 121073}, {, }},
⋯ 3670⋯ , {422.34, 14.7601, Meta} → {{1, 36919, 102 737}, {, }},

9 →  ⋯ 1⋯ , ⋯ 8⋯ , 19 →  ⋯ 1⋯ , 20 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

There are multiple samples given by the outer associations. We can use Query to get any data. For example we can get the outer keys:

In[143]:= Query[Keys]@metabolitesNegativeModeExample

Out[143]= {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20}

In[144]:= Query[Keys]@metabolitesPositiveModeExample

Out[144]= {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20}

We notice that sample 7, 18 and 21 are missing as there was no sample for these time points. This will be addressed further below.

We can get the intensity data from any sample and entry. For example, the 77th and 155th entries in sample 14:

In[145]:= Query["14", {77, 155}]@metabolitesNegativeModeExample

Out[145]= {322.089, 0.440241, Meta} →

{31 950, 29801, 27440}, Isosorbide-2-glucuronide [ C12 H18 O10, db=60.03, overall=60.67, mfg=61.31,
KEGG ID=, CAS ID=29542-01-6 ], 29542-01-6, {146.059, 0.742692, Meta} → {62667, 1, 60382},

Adipic acid [ C6 H10 O4, db=45.74, overall=46.59, mfg=47.44, KEGG ID=, CAS ID=124-04-9 ], 124-04-9

The outer keys correspond to the identified features in the form {mass to charge ratio (m/z), retention time, "Meta"}, i.e. each m/z and retention time

has  been  tagged  with  a  "Meta"  label  as  well  to  indicate  these  are  metabolomics  data.  The   values  of  all  the  keys/IDs  correspond  to

{{measurements}, {metadata}},  and  in  this  particular  example:

{{intensity technical replicate 1, intensity technical replicate 2, intensity technical replicate 3},
{Annotations, CAS Number}}

. 
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The outer keys correspond to the identified features in the form {mass to charge ratio (m/z), retention time, "Meta"}, i.e. each m/z and retention time

has  been  tagged  with  a  "Meta"  label  as  well  to  indicate  these  are  metabolomics  data.  The   values  of  all  the  keys/IDs  correspond  to

{{measurements}, {metadata}},  and  in  this  particular  example:

{{intensity technical replicate 1, intensity technical replicate 2, intensity technical replicate 3},
{Annotations, CAS Number}}

. 

We would like to combine the positive and negative mode metabolomics data. We will use EnlargeInnerAssociation :

In[146]:= metabolitesExample =
EnlargeInnerAssociationmetabolitesNegativeModeExample, metabolitesPositiveModeExample

Out[146]=

8 → {457.002, 0.34764, Meta} →

{23444, 16317, 1},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{1, 36919, 102 737}, {, }}, ⋯ 10⋯ ,

20 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing of Metabolome Data

We  will  next  preprocess  the  imported  metabolome  data.  We  will  first  perform  calculate  the  median  of  the  technical  replicates,  transform  the  data

towards  a  normal  distribution,  then  we  will  re-label  the  samples  with  real  time  and  carry  out  filtering  for  missing  data.  Finally,  we  will  create  the

metabolomics time series or relative intensities compared to the healthy reference point for each mass feature identified.

Medians of Technical Triplicates, Data Transformation, Labeling, Filtering, Matching Mass

Median of Technical Triplicates

The metabolomics intensities have three measurements,  corresponding to technical  triplicates.  Typically  we would like to use the median of  these

values.  An  additional  complication  is  that  some  of  the  triplicates  have  intensity  values  of  1,  which  should  be  taken  as  a  Missing  value.  We  can  use

MeasurementApplier to perform the calculation:

MeasurementApplier[ function,omicsObject] applies a function to the measurement list of an 
omicsObject, ignoring missing values.

Applying a function to the measurements in an OmicsObject.
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option name default value

ComponentIndex All ComponentIndex  is an option for 

MathIOmica functions, such as Applier , 
that allows selection of which component 
of a list to use in an association or 
OmicsObject input or output values.

IgnorePattern _Missing IgnorePattern is an option for 
MeasurementApplier specifying a 
pattern of values to delete prior to 
applying the function to the measurement 
list.

ListIndex 1 ListIndex  is an option for MathIOmica 

functions, such as Applier  that allows 
selection of which list to use in the 
association or OmicsObject input or output 
values.

Options for MeasurementApplier .

We implement a Median calculation, and ignoring entries with missing and values of 1:

In[147]:= metaboliteMedians = MeasurementApplierMedian, metabolitesExample, IgnorePattern → _Missing 1 1.

Out[147]=

8 →

{457.002, 0.34764, Meta} → {19880.5},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{69828.}, {, }}, ⋯ 10⋯ ,

20 → {457.002, 0.34764, Meta} → {16606.5},  ⋯ 1⋯ , ⋯ 5962⋯ ,  ⋯ 1⋯  → ⋯ 1⋯ 

large output show less show more show all set size limit...

Data Power Transformation

We apply a Box-Cox transformation to the metabolite median data in the OmicsObject, which is now the first list first component for each identifier. The 

optimized λ
=

 parameter for each sample is printed out for reference:

In[148]:= transformedMetaboliteData = ApplyBoxCoxTransformmetaboliteMedians, ListIndex → 1, ComponentIndex → 1

Printed from the Complete Wolfram Language Documentation 52

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



Calculated Box-Cox parameter λ
=

= -0.288857

Calculated Box-Cox parameter λ
=

= -0.282374

Calculated Box-Cox parameter λ
=

= -0.276202

Calculated Box-Cox parameter λ
=

= -0.262075

Calculated Box-Cox parameter λ
=

= -0.271308

Calculated Box-Cox parameter λ
=

= -0.27703

Calculated Box-Cox parameter λ
=

= -0.295395

Calculated Box-Cox parameter λ
=

= -0.264833

Calculated Box-Cox parameter λ
=

= -0.278556

Calculated Box-Cox parameter λ
=

= -0.269513

Calculated Box-Cox parameter λ
=

= -0.265784

Calculated Box-Cox parameter λ
=

= -0.262769

Out[148]=

8 →

{457.002, 0.34764, Meta} → {3.26345},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{3.32386}, {, }},

⋯ 10⋯ , 20 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can plot the data to see what the resulting distributions look like:

In[149]:= Histogram[#] & /@ Query[All, Values, 1, 1]@transformedMetaboliteData

Out[149]= 8 → , 9 → , 10 → , 11 → ,

12 → , 13 → , 14 → , 15 → ,

16 → , 17 → , 19 → , 20 → 
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We may also wish to standardize the distributions:

In[150]:= metabolitesStandardized =
ReturnertransformedMetaboliteData, ApplierStandardizeExtended#, Mean, StandardDeviation &,

transformedMetaboliteData, ListIndex → 1, ComponentIndex → 1, ListIndex → 1, ComponentIndex → 1

Out[150]=

8 →

{457.002, 0.34764, Meta} → {-1.71178},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{-0.247328}, {, }},

⋯ 10⋯ , 20 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can again plot the data to see what the standardized distributions look like:

In[151]:= Histogram[#] & /@ Query[All, Values, 1, 1]@metabolitesStandardized

Out[151]=

Re-labeling Samples with Times

As  with  the  transcriptome,  we  notice  that  the  sample  numberings  do  not  correspond  to  actual  days,  so  we  may  adjust  using  the  sampleToDays

association created above:

In[152]:= sampleToDays =
3"7" → "186", "8" → "255", "9" → "289", "10" → "290", "11" → "292", "12" → "294", "13" → "297", "14" → "301",
"15" → "307", "16" → "311", "17" → "322", "18" → "329", "19" → "369", "20" → "380", "21" → "400"4;
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We can now do a KeyMap to rename the outer keys:

In[153]:= metabolitesLongitudinal = KeyMapsampleToDays, metabolitesStandardized

Out[153]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{-0.247328}, {, }},

⋯ 10⋯ , 380 → {457.002, 0.34764, Meta} →  ⋯ 1⋯ , ⋯ 5963⋯ 

large output show less show more show all set size limit...

Now let's check the timepoints in this dataset:

In[154]:= timesMetaboliteRawData = TimeExtractormetabolitesLongitudinal

Out[154]= {255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380}

We notice a complication: there are three timepoints missing, corresponding to the three samples for which we had indicated above that there were

no measurements (compared to the transcriptome samples). These are samples on days "186", "329" and "400".

We can use the ConstantAssociator  function to append these to the transformed data, tagging these data as Missing data:

In[155]:= metabolitesLongitudinalEnlarged =
ConstantAssociatormetabolitesLongitudinal, <|"186" → Missing[], "329" → Missing[], "400" → Missing[]|>

Out[155]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 5962⋯ , {422.34, 14.7601, Meta} → {{-0.247328}, {, }},

⋯ 13⋯ , 400 → {457.002, 0.34764, Meta} → ⋯ 1⋯ , ⋯ 5962⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now check the timepoints again:

In[156]:= timesMetabolites = TimeExtractormetabolitesLongitudinalEnlarged

Out[156]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

Filter Data

We will next remove values that have been tagged overall as Missing[], retaining data that have at least 3/4 data points available across all samples.

Additionally we remove data where the reference healthy sample "255" was missing. We use the function FilterMissing  for this implementation:

In[157]:= filteredMetaboliteData = FilterMissingmetabolitesLongitudinalEnlarged, 3/4, Reference → "255"
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{Missing -> Counts: , /3 → 4601, 4 → 1158, 5 → 172, 6 → 31, 7 → 20}

3
4
5
6
7

Out[157]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 4599⋯ , {406.381, 14.5609, Meta} →
{{-1.34842}, {2,4,6-trimethyl-2,15… ipid ID=, KEGG ID= ], }}, ⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Matching Unique Mass

We  may  want  to  match  a  unique  mass  to  the  metabolites.  This  is  a  putative  mass  identification  based  on  the  uniqueness  of  the  mass  feature.  If

matched, a KEGG compound identity can be prepended to the identifier using OmicsObjectUniqueMassConverter .
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OmicsObjectUniqueMassConverter[
omicsObject, massAccuracy]

assigns a unique putative mass identification to each of 
omicsObject's inner association keys, using the 
massAccuracy in parts per million.

Matching putative mass identifications to mass features in an OmicsObject  of metabolites.

We match our identities to KEGG compound identifiers, using a 2ppm accuracy (this may take some time depending on the number of matching data):

In[158]:= massMatchedFilteredMetabolites = OmicsObjectUniqueMassConverterfilteredMetaboliteData, 2

Out[159]=

255 →

{457.002, 0.34764, Meta} → {-1.71178},  [ C16 H11 N9 S4, db=0.00, overall=47.55, mfg=95.11 ], ,
⋯ 4599⋯ , {406.381, 14.5609, Meta} → {{-1.34842}, {2,4,6-trimethyl-2,… id ID=, KEGG ID= ], }},

⋯ 13⋯ , 400 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Create Metabolome Time Series

We can now create time series for each of the proteins. 

For each metabolite feature we now extract a time series (list of values) corresponding to the set of times:

In[160]:= timeSeriesMetabolites = CreateTimeSeriesmassMatchedFilteredMetabolites

Out[160]=
 ⋯ 1⋯ 

large output show less show more show all set size limit...

Take Difference Compared to Reference in Metabolome Time Series.

Now we need to compare  to compare the difference of each intensity for a given metabolite's time series to the intensity of the ratios of expression at

any time point compared to a healthy datapoint. We can use the function SeriesInternalCompare :

We compare every value in each series to the healthy "255" time point, which is the second element in each series: 

In[161]:= metabolitesCompared = SeriesInternalComparetimeSeriesMetabolites, ComparisonIndex → 2

Out[161]=

{457.002, 0.34764, Meta} → Missing[], 0., -0.326659, -0.244843, 0.0307746, -0.112847, ⋯ 3⋯ ,
-0.640794, -0.165613, Missing[], -0.340455, -0.143904, Missing[], ⋯ 4599⋯ ,  ⋯ 1⋯  → ⋯ 1⋯ 

large output show less show more show all set size limit...
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Take the Norm and Remove Constant Metabolome Time Series

Next, we normalize each series, using again SeriesApplier :

In[274]:= normedMetabolitesCompared = SeriesApplierNormalize, metabolitesCompared

Out[274]=

{457.002, 0.34764, Meta} → Missing[], 0., -0.343784, -0.25768, 0.032388, -0.118763,
⋯ 3⋯ , -0.674389, -0.174295, Missing[], -0.358304, -0.151448, Missing[], ⋯ 4600⋯ 

large output show less show more show all set size limit...

Finally, we use ConstantSeriesClean  to remove constant series, as we are interested in changing time patterns:

In[275]:= metabolomeFinalTimeSeries = ConstantSeriesCleannormedMetabolitesCompared

Out[275]=

{457.002, 0.34764, Meta} → Missing[], 0., -0.343784, -0.25768, 0.032388, -0.118763,
⋯ 3⋯ , -0.674389, -0.174295, Missing[], -0.358304, -0.151448, Missing[], ⋯ 4600⋯ 

large output show less show more show all set size limit...

Resampling Metabolome Data

We  also  would  like  to  create  a  resampled  distribution  for  the  metabolome  dataset  prior  to  classification  and  clustering.  In  this  subsection  we  first

resample the imported metabolome dataset. Then, we carry out the full analysis in this "bootstrap" dataset, to create a set of random metabolome

time  series.  This  bootstrap  distribution  of  time  series  will  be  used  to  provide  the  cutoffs  used  in  the  time  series  classification  in  the  following

subsection.

Resampling the Proteome Data

We create a resampling of 100000 sets:

In[164]:= metabolitesBootstrap = BootstrapGeneralmetabolitesExample, 100 000

Out[164]=

8 → 1 → {88478, 100725, 59680},
2-pentadecenoic acid [ C15 H28 O2, db=82.32, overall=82.52, mfg=46.15, Lipid ID=, KEGG ID= ],
, ⋯ 99 998⋯ ,

100000 → {{44327, 153862, 33442}, {5alpha-Cholan-24-oic Acid… .87, Lipid ID=, KEGG ID= ], }},
⋯ 10⋯ , 20 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

Processing the Bootstrap Metabolome and Creating Bootstrap Time Series

We implement a Median calculation, and ignoring entries with missing and values of 1 for the bootstrap set:

In[165]:= metaboliteBootstrapMedians =
MeasurementApplierMedian, metabolitesBootstrap, IgnorePattern → _Missing 1 1.;

We apply a Box-Cox transformation to the bootstrap metabolite median data in the OmicsObject, which is now the first list first component for each 

identifier. The optimized λ
=

 parameter for each sample is printed out for reference:

In[166]:= transformedBootstrapMetaboliteData =
ApplyBoxCoxTransformmetaboliteBootstrapMedians, ListIndex → 1, ComponentIndex → 1
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Calculated Box-Cox parameter λ
=

= -0.287152

Calculated Box-Cox parameter λ
=

= -0.280376

Calculated Box-Cox parameter λ
=

= -0.276347

Calculated Box-Cox parameter λ
=

= -0.260243

Calculated Box-Cox parameter λ
=

= -0.270257

Calculated Box-Cox parameter λ
=

= -0.273974

Calculated Box-Cox parameter λ
=

= -0.294708

Calculated Box-Cox parameter λ
=

= -0.265066

Calculated Box-Cox parameter λ
=

= -0.280128

Calculated Box-Cox parameter λ
=

= -0.269042

Calculated Box-Cox parameter λ
=

= -0.265108

Calculated Box-Cox parameter λ
=

= -0.262923

Out[166]=

8 → 1 → {3.35022},
2-pentadecenoic acid [ C15 H28 O2, db=82.32, overall=82.52, mfg=46.15, Lipid ID=, KEGG ID= ],
, 2 →  ⋯ 1⋯ , ⋯ 99 996⋯ , 99999 → ⋯ 1⋯ , 100 000 →

{{3.32119}, {5alpha-Cholan-24-oic Acid [ … 96.87, Lipid ID=, KEGG ID= ], }}, ⋯ 10⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We may also wish to standardize the distributions:

In[167]:= metabolitesBootstrapStandardized = ReturnertransformedBootstrapMetaboliteData,
ApplierStandardizeExtended#, Mean, StandardDeviation &, transformedBootstrapMetaboliteData,
ListIndex → 1, ComponentIndex → 1, ListIndex → 1, ComponentIndex → 1

Out[167]=

8 → 1 → {-0.0237496},
2-pentadecenoic acid [ C15 H28 O2, db=82.32, overall=82.52, mfg=46.15, Lipid ID=, KEGG ID= ],
, 2 →  ⋯ 1⋯ , ⋯ 99 996⋯ , 99999 → ⋯ 1⋯ , 100 000 →

{{-0.714262}, {5alpha-Cholan-24-oic Acid … .87, Lipid ID=, KEGG ID= ], }}, ⋯ 10⋯ , ⋯ 1⋯ 

large output show less show more show all set size limit...

We can now do a KeyMap to rename the outer keys with labels corresponding to days:

In[168]:= metabolitesBootstrapLongitudinal = KeyMapsampleToDays, metabolitesBootstrapStandardized;

Now let's check the timepoints in this dataset:

In[169]:= timesMetaboliteBootstrapData = TimeExtractormetabolitesBootstrapLongitudinal

Out[169]= {255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 369, 380}

We can use the ConstantAssociator  function to append the "186", "329" and "400" missing days to the transformed bootstrap data:

In[170]:= metabolitesBootstrapLongitudinalEnlarged = ConstantAssociator
metabolitesBootstrapLongitudinal, <|"186" → Missing[], "329" → Missing[], "400" → Missing[]|>;
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We can now check the timepoints again:

In[171]:= timesMetabolitesBootstrap = TimeExtractormetabolitesBootstrapLongitudinalEnlarged

Out[171]= {186, 255, 289, 290, 292, 294, 297, 301, 307, 311, 322, 329, 369, 380, 400}

We next remove values that have been tagged overall as Missing[], retaining data that have at least 3/4 data points available across all samples. 

Additionally we remove data where the reference healthy sample "255" was missing. We use the function FilterMissing  for this implementation:

In[172]:= filteredMetaboliteBootstrapData =
FilterMissingmetabolitesBootstrapLongitudinalEnlarged, 3/4, Reference → "255";

{Missing -> Counts: , /3 → 75579, 4 → 21924, 5 → 2352, 6 → 142, 7 → 30}

3
4
5
6
7

For each bootstrap metabolite feature we now extract a time series (list of values) corresponding to the set of times:

In[173]:= timeSeriesMetabolitesBootstrap = CreateTimeSeriesfilteredMetaboliteBootstrapData;
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We compare every value in each bootstrap series to the healthy "255" time point, which is the second element in each series: 

In[174]:= metabolitesBootstrapCompared = SeriesInternalComparetimeSeriesMetabolitesBootstrap, ComparisonIndex → 2;

Next, we normalize each series, using again SeriesApplier :

In[175]:= normedMetabolitesBootstrapCompared = SeriesApplierNormalize, metabolitesBootstrapCompared;

Finally, we use ConstantSeriesClean  to remove constant series, as we are interested in changing time patterns:

In[176]:= metabolomeBootstrapFinalTimeSeries = ConstantSeriesCleannormedMetabolitesBootstrapCompared;

Classification of Metabolome Time Series

In  this  subsection  we  will  classify  the  metabolome  time  series  based  on  patterns  in  the  series.  For  the  classification  we  will  use

TimeSeriesClassification . We will use QuantileEstimator  for the "LombScargle" method to provide a cutoff for the TimeSeriesClassification  inputs.

First, we estimate for the "LombScargle" Method, 0.95 quantile cutoff from the bootstrap metabolome data:

In[276]:= q95Metabolites = QuantileEstimatormetabolomeBootstrapFinalTimeSeries, timesMetabolitesBootstrap

Out[276]= 0.846125

Next, we estimate the "Spikes" 0.95 quantile cutoff from the bootstrap proteome data:

In[277]:= q95MetabolitesSpikes =
QuantileEstimatormetabolomeBootstrapFinalTimeSeries, timesMetabolitesBootstrap, Method → "Spikes"

Out[277]= /12 → {0.67052, -0.651833}0

Now we can classify the proteome time series data based on these cutoffs:

In[278]:= metaboliteClassification = TimeSeriesClassificationmetabolomeFinalTimeSeries,
timesMetabolites, LombScargleCutoff → q95Metabolites, SpikeCutoffs → q95MetabolitesSpikes

Method → "LombScargle"

Out[278]=

SpikeMax →

{1514.1, 0.366235, Meta} → {0.150094, 0.150759, 0.336515, 0.197558, 0.430385, 0.667846, 0.41379},
Missing[], 0., ⋯ 12⋯ , Missing[], ⋯ 134⋯ ,  ⋯ 1⋯  → ⋯ 1⋯ , ⋯ 6⋯ 

large output show less show more show all set size limit...

As discussed above, the default output for TimeSeriesClassification is an Association with outer keys being the classification classes,  inner keys being

the class members, and each class member value being a list of {{computed classification vector}, {input data list}}. 

If we want the classes produced, we can query the keys:

In[180]:= KeysmetaboliteClassification

Out[180]= SpikeMax, SpikeMin, f1, f2, f5, f6, f7

For the number of members in each class we have:

In[279]:= Query[All, Length]@metaboliteClassification

Out[279]= SpikeMax → 136, SpikeMin → 713, f1 → 63, f2 → 38, f5 → 43, f6 → 15, f7 → 33
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We can obtain the membership list in any class of interest:

In[280]:= Query"f1", Keys@metaboliteClassification

Out[280]= {{373.859, 0.411324, Meta}, {cpd:C11821, 184.024, 0.653444, Meta}, {221.109, 10.3062, Meta},
{cpd:C18218, 272.235, 12.7737, Meta}, {294.166, 13.0495, Meta}, {631.385, 13.5221, Meta},
{563.32, 13.7008, Meta}, {779.604, 13.9622, Meta}, {362.266, 14.001, Meta},
{cpd:C17873, 384.36, 14.2982, Meta}, {390.297, 14.3592, Meta}, {420.361, 14.6658, Meta},
{434.376, 14.7796, Meta}, {392.366, 15.0173, Meta}, {394.381, 15.1519, Meta}, {1599.15, 15.281, Meta},
{693.628, 15.6921, Meta}, {874.715, 15.9118, Meta}, {281.986, 0.390455, Meta}, {504.309, 14.3911, Meta},
{416.313, 14.4627, Meta}, {735.521, 15.1792, Meta}, {571.961, 0.388167, Meta}, {489.958, 0.388912, Meta},
{325.95, 0.392472, Meta}, {465.913, 0.393056, Meta}, {383.909, 0.397722, Meta}, {301.906, 0.407861, Meta},
{219.903, 0.412111, Meta}, {161.944, 0.413086, Meta}, {139.061, 0.458472, Meta},
{115.064, 0.463972, Meta}, {71.074, 0.482559, Meta}, {253.165, 9.12729, Meta}, {298.132, 9.30967, Meta},
{cpd:C20605, 411.179, 9.3167, Meta}, {440.201, 11.2909, Meta}, {355.218, 12.7443, Meta},
{338.244, 12.8545, Meta}, {1061.15, 13.0612, Meta}, {210.198, 13.1613, Meta}, {501.367, 13.296, Meta},
{594.375, 13.3701, Meta}, {1538.03, 13.3796, Meta}, {404.314, 13.6028, Meta}, {692.323, 13.7652, Meta},
{670.265, 13.8732, Meta}, {814.584, 14.1513, Meta}, {366.349, 14.3015, Meta}, {442.402, 14.3568, Meta},
{406.381, 14.3581, Meta}, {278.152, 14.364, Meta}, {cpd:C19658, 344.271, 14.4331, Meta},
{420.358, 14.4446, Meta}, {311.319, 14.6119, Meta}, {791.583, 15.4236, Meta}, {1553.18, 15.4429, Meta},
{1545.17, 15.5017, Meta}, {352.052, 0.53368, Meta}, {cpd:C17237, 254.073, 12.2926, Meta},
{336.228, 12.5103, Meta}, {638.402, 13.4139, Meta}, {668.324, 13.988, Meta}}

To obtain the possible frequencies we simply run LombScargle  over the desired times for one of the time series and set the FrequenciesOnly option 

to True :

In[183]:= LombScarglemetabolomeFinalTimeSeries[[1]], timesMetabolites, FrequenciesOnly → True

Out[183]= f1 → 0.00500668, f2 → 0.0104306, f3 → 0.0158545,
f4 → 0.0212784, f5 → 0.0267023, f6 → 0.0321262, f7 → 0.0375501

Combined Data Clustering
In  this  section  we  will  combine  the  omics  data  classes  from  the  individual  classifications  above  using  JoinNestedAssociations   and  hierarchically

cluster the information to obtain a second level of classification using TimeSeriesClusters . We will visualize the results in the following section.

Combining Multi-omics Classified Data

JoinNestedAssociations[associationList] merges the nested associationList (an association of 
associations) by joining the inner associations for each 
matching key.

Joining classification data.
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We combine the classification data using JoinNestedAssociations :

In[281]:= combinedClassification =
JoinNestedAssociationsrnaClassification, proteinClassification, metaboliteClassification 

Out[281]=

SpikeMax → {ATAD3C, RNA} → {0.0855374, 0.204135, 0.219303, 0.378496, 0.5849, 0.346012, 0.545735},
0., 0., 0., 0., ⋯ 7⋯ , 0., 0., 0.075919, 0., ⋯ 1081⋯ , ⋯ 7⋯ , f7 →  ⋯ 1⋯ 

large output show less show more show all set size limit...

We can check the keys before and after the combination:

In[282]:= Keys[#] & /@ rnaClassification, proteinClassification, metaboliteClassification 

Out[282]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7,
SpikeMax, SpikeMin, f1, f5, f6, f7, SpikeMax, SpikeMin, f1, f2, f5, f6, f7

In[283]:= Keys@combinedClassification

Out[283]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7

We can also check the membership counts before and after the combination:

In[284]:= Query[All, Length]@# & /@ rnaClassification, proteinClassification, metaboliteClassification 

Out[284]= SpikeMax → 822, SpikeMin → 5963, f1 → 116, f2 → 3, f3 → 30, f4 → 128, f5 → 35, f6 → 13, f7 → 61,
SpikeMax → 124, SpikeMin → 48, f1 → 77, f5 → 7, f6 → 36, f7 → 18,
SpikeMax → 136, SpikeMin → 713, f1 → 63, f2 → 38, f5 → 43, f6 → 15, f7 → 33

In[285]:= Query[All, Length]@combinedClassification

Out[285]= SpikeMax → 1082, SpikeMin → 6724, f1 → 256, f2 → 41, f3 → 30, f4 → 128, f5 → 85, f6 → 64, f7 → 112

Clustering of Classified Data

Now that we have combined the classes for the various omics, we can cluster them together to obtain the various trends using TimeSeriesClusters . A

two-tier  hierarchical  clustering  of  the  data  is  performed,  using  a  set  of  two  classification  vectors,

{{classification vector1}, {classification vector2}}  for  each  time  series  to  cluster  the  data  pairwise.  The  vectors  are  typically

the  output  from  TimeSeriesClassification .  Similarities  at  each  clustering  tier  are  then  computed  using  in  succession  from  each  time  series  first

{classification vector1},  and  subsequently  {classification vector2}  (which  corresponds  to  the  {input data time series}  if

the input is from TimeSeriesClassification ).  

The number of groups and subgroups for each tier of clustering is automatically determined by using internally the "Silhouette" (default) or "Gap" as

"SignificanceTest" methods (see also Partitioning Data into Clusters).
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TimeSeriesClusters[data] performs clustering of time series data using two tiers of 
hierarchical clustering to identify groups and subgroups in 
the data. TimeSeriesClusters takes as input series data, 
where each data is comprised of two lists and performs 
clustering of the data to identify groups and subgroups 
based on similarities between the input series. The form of 
the input data is either an association of classes and 
members, where each member must have a list of two 
components, typically two vectors used in classification: 
{{classification vector1},

{classification vector2}}
.

In the most common case of using as input data that came 
from performing a TimeSeriesClassification, the 
{classification vector2} will correspond to input 
original data for the corresponding time series.

Clustering of classified time series.
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option name default value

ClusterLabeling "" Additional label to append to each cluster 
being computed to prepend to the inbuilt 
G#S# labeling.

DendrogramPlotOptions {} Options passed to the DendrogramPlot 
function used internally to generate the 
dendrograms.

DistanceFunction EuclideanDistance Distance function to be used in calculating the similarities between 
different time series in the first tier of clustering.

LinkageMeasure "Average" Which linkage measure to use in 
computing fusion coefficients.

PrintDendrograms False Option to print dendrograms for the 
clustering computed.

ReturnDendrograms False Option to return the dendrograms as 
output.

SignificanceCriterion "Silhouette" Method used in determining the number of 
groups and subgroups at each tier of 
clustering.

SingleAssociationLabel "1" Label to use in case a list is provided to 
name the class of data produced.

SubclusteringDistanceFunction EuclideanDistance Distance function to be used in calculating the similarities between 
different time series in the second tier of clustering.

Options for TimeSeriesClusters .

The  output  of  TimeSeriesClusters  is  always  an  association  of  associations,  providing  a  summary  of  the  two  tier  clustering  results  for  each  class

provided in the input. The output has the form:

output =
<| Class1 → <|"Cluster" → cluster object1,

"InitialSplitCluster" → {InitialSplitCluster11, InitialSplitCluster12 ...},
"IntermediateClusters" → {IntermediateCluster11, IntermediateCluster12 ...},
"SubsplitClusters" → {{SubsplitClusters11} {SubsplitClusters12}},
"Data" → {{input data vector11} → Member11, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

Class2 → <|"Cluster" → cluster object2,
"InitialSplitCluster" → {InitialSplitCluster21, InitialSplitCluster22 ...},
"IntermediateClusters" → {IntermediateCluster21, IntermediateCluster22 ...},
"SubsplitClusters" → {{SubsplitClusters21} {SubsplitClusters22}},
"Data" → {{input data vector21} → Member21, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

...,
ClassM → <|"Cluster" → cluster objectM,

"InitialSplitCluster" → {InitialSplitClusterM1, InitialSplitClusterM2 ...},
"IntermediateClusters" → {IntermediateCluster M1, IntermediateClusterM2 ...},
"SubsplitClusters" → {{subsplitClustersM1} {subsplitClustersM2}},
"Data" → {{input data vectorM1} → MemberM1, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>

|>
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output =
<| Class1 → <|"Cluster" → cluster object1,

"InitialSplitCluster" → {InitialSplitCluster11, InitialSplitCluster12 ...},
"IntermediateClusters" → {IntermediateCluster11, IntermediateCluster12 ...},
"SubsplitClusters" → {{SubsplitClusters11} {SubsplitClusters12}},
"Data" → {{input data vector11} → Member11, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

Class2 → <|"Cluster" → cluster object2,
"InitialSplitCluster" → {InitialSplitCluster21, InitialSplitCluster22 ...},
"IntermediateClusters" → {IntermediateCluster21, IntermediateCluster22 ...},
"SubsplitClusters" → {{SubsplitClusters21} {SubsplitClusters22}},
"Data" → {{input data vector21} → Member21, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>,

...,
ClassM → <|"Cluster" → cluster objectM,

"InitialSplitCluster" → {InitialSplitClusterM1, InitialSplitClusterM2 ...},
"IntermediateClusters" → {IntermediateCluster M1, IntermediateClusterM2 ...},
"SubsplitClusters" → {{subsplitClustersM1} {subsplitClustersM2}},
"Data" → {{input data vectorM1} → MemberM1, ...,},
"GroupAssociations" → <|"G1S1" → {member list G1S1},

"G1S2" → {member list for G1S2},
...,
"G2S1" → { ...}|>|>

|>
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Method Description

"Cluster" Cluster generated using the input 
{classification vector1} for similarity 
calculations. 

"InitialSplitCluster" Clusters resulting from splitting the initial cluster 
(reported by key "Cluster") into groups using the 
SignificanceCriterion to determine the number of clusters.

"IntermediateClusters" Aglomerative clustering result of hierarchical clustering of 
each of the initial split clusters (reported by 
"InitialSplitCluster")

"SubsplitClusters" Custers generated from splitting the clusters following the 
second tier clustering (reported by 
"IntermediateClusters") into subgroups using the 
SignificanceCriterion to determine the number of clusters.

"Data" Data reported in the order of clustering results as rules of 
{classification vector2}→ label for each time 
series, sorted in order of the clustering results.

"GroupAssociations" Association denoting membership of each initial data 
label to groups and subgroups generated by the two tier 
clustering.

Output keys for TimeSeriesClusters  provide clustering information.

We now cluster our combined data (a printout of the clusters is included as a default option):

In[286]:= combinedClusters = TimeSeriesClusterscombinedClassification

Out[286]=

SpikeMax →  ⋯ 1⋯ , SpikeMin →  ⋯ 1⋯ , ⋯ 5⋯ , f6 → ⋯ 1⋯ ,
f7 → Cluster → Cluster ⋯ 1⋯ , ⋯ 4⋯ , GroupAssociations → G1S1 → {MIR6723, RNA}, {ZNF324, RNA},

{CBX6, RNA}, ⋯ 106⋯ , {O60884, Protein}, {RTFDC1, RNA}, {246.121, 0.940379, Meta}

large output show less show more show all set size limit...

Visualization
After  our  data  have  been  clustered,  we  would  like  to  visualise  the  results  in  heatmaps  and  dendrograms.  For  the  two-tier  clustering  we  have  per-

formed MathIOmica can output all the clusterings in labeled dendrograms and heatmaps using TimeSeriesDendrogramsHeatmaps , which iteratively

calls TimeSeriesDendrogramHeatmap  on each class.
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TimeSeriesDendrogramsHeatmaps[data] generates  dendrograms and associated heatmap plots for 
clustered time series data, typically the output of all 
classes generated by implementing  TimeSeriesClusters . 

TimeSeriesDendrogramHeatmap[data] generates a dendrogram and heatmap plot for one set of 
time series data clusters, typically the output of a single 
class of  TimeSeriesClusters .

Visualizing the results of classification.

option name default value

FunctionOptions ImageSize -> 200 Options list passed to the internal 
TimeSeriesDendrogramHeatmap  function.

Options for TimeSeriesDendrogramsHeatmaps .
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option name default value

ColorBlending {CMYKColor[1,
0, 1, 0],

CMYKColor[0,
1, 1, 0]}

Color scheme for the plot. The color list is 
passed to an internal Blend function to 
create a ColorFunction for an internal 
ArrayPlot function.

DendrogramColor RGBColor[1, 1, 0] Color to highlight the dendrograms.

FrameName "Dendrogram
and Heatmap"

Label for plot frame.

GroupSubSize {0.1, 0.1} Relative size of group and subgroup 
reference column in plot.

HorizontalAxisName "Time (arbitrary
units)"

Label for the horizontal heatmap axis.

HorizontalLabels None Labels for horizontal axis for each column.

IndexColor "DeepSeaColors" Choice of color for labeling the 
group/subgroup index.

ImageSize 200 ImageSize is an option that specifies the 
overall size of an image to display for an 
object. 

ScaleShift None Option to reset the blend of the colors 
used overall. The option is a real positive 
number, and is used as a multiplier for an 
internal Blend function's second argument.

VerticalLabels None Labels for vertical axis for each row.

Options for TimeSeriesDendrogramHeatmap .

For each class a separate plot is generated: dendrograms are represented on the left, and are highlighted to represent the grouping level. The G, S, 
columns represent the groupings and subgroupings generated by the clustering.  The legend shows the corresponding groupings and subgrouping, and 
the number of elements in each group subgroup.

In[287]:= TimeSeriesDendrogramsHeatmapscombinedClusters

Out[287]=
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Out[287]=
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Out[287]=
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Out[287]=

Annotation and Enrichment
Having carried out the classification and clustering of data base on its temporal pattern, we would like to perform annotation of these data for gene

ontology (GO) and pathways from KEGG: Kyoto Encyclopedia of Genes and Genomes.

Gene Ontology Analysis

MathIOmica  provides  a  GOAnalysis  function  using  annotations  (default  is  for  human  data)  obtained  from  the  Gene  Ontology  consortium,  and  by

default  uses  human  data  annotated  with  UniProt  IDs.  The  GOAnalysis  function  performs  an  over-representation  (ORA)  analysis,  providing  a

"significance" cutoff based on a p-value assessed by a hypergeometric function. 
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GOAnalysis[data] calculates input data over-representation analysis (ORA) 
for Gene Ontology (GO) categories. We note that the 
function utilizes ontologies obtained from the GO 
Consortium, and by default uses human data annotated 
with UniProt IDs.

Performing an over representation analysis for Gene Ontology (GO) terms, using clustered data in MathIOmica.

option name default value

AdditionalFilter None AdditionalFilter provides additional 
filtering that may be applied to the 
standard output structure to be returned. 

AugmentDictionary True AugmentDictionary provides a choice 
whether or not to augment the current 
ConstantGeneDictionary  variable or create 
a new one.

BackgroundSet All BackgroundSet provides a list of IDs (e.g. 
gene accessions) that should be 
considered as the background for the 
calculation.

FilterSignificant True FilterSignificant can be set to True to filter 
data based on whether the enrichment 
analysis is statistically significant, or if set 
to False to return all membership 
computations.

GeneDictionary None GeneDictionary points to an existing 
variable to use as a gene dictionary in 
annotations. If set to None the default 
ConstantGeneDictionary  will be used.

GetGeneDictionaryOptions {} The GetGeneDictionaryOptions option 
specifies a list of options that will be 
passed to the internal GetGeneDictionary  
function.

GOAnalysisAssignerOptions {} The GOAnalysisAssignerOptions option 
specifies a list of options that will be 
passed to the internal GOAnalysisAssigner  
function.
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The GOAnalysisAssignerOptions option 
specifies a list of options that will be 
passed to the internal GOAnalysisAssigner  
function.

HypothesisFunction (Query["Results"][
BenjaminiHo-

chbergFDR[
#1,
Significa-
nceLevel
->
#2]] &)

The HypothesisFunction option allows us 
to chose a function to implement multiple 
hypothesis testing.  The default is  using 
the BenjaminiHochbergFDR  function.
The user can use any function f with three 
inputs, of the form f[#1,#2,#3] where the 
inputs refer to:
#1 is the p-value list, 
#2 is a significance cutoff, 
#3 is the number of GO associations 
overall being tested. 
The function f must output a list of 3 
values: {original p-value, adjusted p-
value, True or False based on whether this 
value is considered statistically significant 
or not respectively}.

InputID {"UniProt ID",
"Gene Symbol"}

The InputID option specifies the kind of 
identifiers/accessions used as input.

MultipleList False MultipleList option specifies whether the 
input accessions list constituted a multi-
omics list input that is annotated so. If this 
is the case, MultipleList is set to True and 
each input list ID should have the form 
{ID,"Omics Type Label"}, e.g. 
{"NFKB1","Protein"}, and the different 
omics type are treated as different for each 
ID. If MultipleList is set to False, and 
labeled IDs are provided, labels 
corresponding to the same ID are treated 
as equivalent to avoid overcounting.

MultipleListCorrection None MultipleListCorrection is an option 
whether or not to correct for multi-omics 
analysis. The choices are None, Automatic, 
or a custom number. This essentially 
enlarges the population by this factor to 
account for additional IDs being 
considered as the result of a multi-omics 
cluster analysis. If the value is set to 
Automatic the number of unique ID labels 
is used to make the correction.

Printed from the Complete Wolfram Language Documentation 74

©1988–2019 Wolfram Research, Inc. All rights reserved. http://reference.wolfram.com/language



MultipleListCorrection is an option 
whether or not to correct for multi-omics 
analysis. The choices are None, Automatic, 
or a custom number. This essentially 
enlarges the population by this factor to 
account for additional IDs being 
considered as the result of a multi-omics 
cluster analysis. If the value is set to 
Automatic the number of unique ID labels 
is used to make the correction.

OBOGODictionaryOptions {} OBOGODictionaryOptions specifies a list of 
options to be passed to the internal 
OBOGODictionary  function that provides 
the GO annotations.

OBODictionaryVariable None OBODictionaryVariable can provide a GO 
annotation variable. If set to None, 
OBOGODictionary  will be used internally to 
automatically generate the default GO 
annotation.

OntologyLengthFilter 2 OntologyLengthFilter can be used to set 
the value for which terms to consider in the 
computation, by excluding GO terms that 
have fewer items compared to the 
OntologyLengthFilter value. It is used by 
the internal GOAnalysisAssigner  function.

OutputID "UniProt ID" The OutputID option takes a string value 
that specifies what kind of IDs/accessions 
to convert the input IDs to compute the GO 
enrichment.

pValueCutoff 0.05 pValueCutoff provides a cutoff p-value for 
adjusted p-values to assess statistical 
significance.

ReportFilter 1 ReportFilter provides a cutoff for 
membership in ontologies in selecting 
which terms/categories to return. It is used 
in conjunction with ReportFilterFunction.

ReportFilterFunction GreaterEqualThan ReportFilterFunction specifies what 
operator form will be used to compare 
against ReportFilter option value in 
selecting which terms/categories to return. 
The default is to use GreaterEqualThan. 

Species "human" The Species option specifies the species 
considered in the calculation.
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TestFunction (1 -N[ CDF[
Hypergeom-
etricDist-
ribution[
#1, #2,
#3], #4 -
1]] )&

The TestFunction option provides a 
function used to calculate the p-values for 
the enrichment of each term. It can be a 
function of four inputs, f[#1,#2,#3,#4] 
(e.g. the default is using a hypergeometric 
distribution CDF, 1-
N[CDF[HypergeometricDistribution[#1,#2,
#3],#4-1]]]. The four inputs refer to:
#1 is number of draws (members in group 
being tested),
#2 is number of successes for category in 
population,
#3 is total number of members in 
population,
#4 is number of successes (or more) in 
current group being tested for specific 
category.
The output is a p-value (real positive 
number ≤ 1).

Options for GOAnalysis .

The input data for GOAnalysis  be a single list of n genes in the form:

data = {ID1, ID2, ..., IDn}

The  IDs  may  be  provided  as  ID  strings,  or  as  labeled  strings  in  the  case  of  multiple  omics  being  considered.  Labeled  IDs  are  provided  as

{{ID1, label1}, {ID2, label2}, ... {ID3, label2}}. The labels are typically a string, e.g. typically "RNA" or "Protein".

The default output contains each GO:term that was considered and found to be statistically significant. For each GO term we schematically have an

association with keys GO : Term → {{testing outcomes}, {statistics}, {{GO term}, {Membership}}. The output has the following

structures: for a single list input:

listOutput = <|
GO : Term1 → {{p - value1, multiple hypothesis adjusted p - value1, True/False for statistical significance},

{{number of members in group being tested, number of successes for term1 in population, total number of
members in population, number of members (or more) in current group being tested associated to term1},

{{GO term1 description, ontology category for term1}, {input IDs associated to Term1}}}},
GO : Term2 → {{p - value2, multiple hypothesis adjusted p - value2, True/False for statistical significance},

{{number of members in group being tested, number of successes for term2 in population, total number of
members in population, number of members (or more) in current group being tested associated to term2},

{{GO term2 description, ontology category for term2}, {input IDs associated to Term2}}}}, ...,
GO : Termn → {{p - valuen, multiple hypothesis adjusted p - valuen, True/False for statistical significance},

{{number of members in group being tested, number of successes for termn in population, total number of
members in population, number of members (or more) in current group being tested associated to termn},

{{GO termn description, ontology category for termn}, {input IDs associated to termn}}}}
|>

GOAnalysis  can also take as input the output of clustering of time series classification data, e.g. TimeSeriesClusters  or TimeSeriesSingleClusters

association  of  associations.  The  groups  for  each  class  will  then  have  keys  labeled  "GroupAssociations",  that  include  the  labels  used  in  the

clustering.  The  labels  must  correspond  to  protein  or  gene  accessions/IDs.  For  each  class  and  group  the  corresponding  GOAnalysis  enrichment  is

computed and returned. 
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GOAnalysis  can also take as input the output of clustering of time series classification data, e.g. TimeSeriesClusters  or TimeSeriesSingleClusters

association  of  associations.  The  groups  for  each  class  will  then  have  keys  labeled  "GroupAssociations",  that  include  the  labels  used  in  the

clustering.  The  labels  must  correspond  to  protein  or  gene  accessions/IDs.  For  each  class  and  group  the  corresponding  GOAnalysis  enrichment  is

computed and returned. 

We also note that GOAnalysis provides a multiple-hypothesis adjusted p-value. By default, it utilizes a Benjamini-Hochberg false discovery rate (FDR)

using BenjaminiHochbergFDR .

BenjaminiHochbergFDR[pValues] calculates for a list of pValues, {p1, p2, ... pN}, the 
Benjamini Hochberg approach false discovery rates (FDR). 

Calculating a false discovery rate (FDR).

We carry out our GOAnalysis for all the classes and groups/subgroups. We only report terms for which there are at least 3 members, and additionally 
correct for multiple omics (2 sets of GO terms, one each for proteomics and transcriptomics).  Please note that this is a time consuming computation.

In[288]:= goAnalysisCombined = GOAnalysiscombinedClusters, OntologyLengthFilter → 3,
ReportFilter → 3, MultipleList → True, MultipleListCorrection → 2 ;

We see that the classification is maintained:

In[289]:= Keys@goAnalysisCombined

Out[289]= SpikeMax, SpikeMin, f1, f2, f3, f4, f5, f6, f7

Let us extract the top 3 results from all the "SpikeMax" data:

In[290]:= Query"SpikeMax", All, 1 ;; 3@goAnalysisCombined

Out[290]= G1S1 → GO:0005739 →

7.01352×10-9, 0.0000110673, True, {243, 2480, 39544, 41}, {mitochondrion, cellular_component},
{{ATAD3C, RNA}}, {{PDP2, RNA}}, {{IBA57, RNA}}, {{KIAA1683, RNA}}, {{GK5, RNA}},
{{SPATA5, RNA}}, {{PPARGC1B, RNA}}, {{GDAP1, RNA}}, CXorf23, RNA, {{Q9NSE4, Protein}},
{{O75323, Protein}}, {{P06576, Protein}}, {{SYNJ2BP, RNA}}, {{P10809, Protein}},
{{Q99798, Protein}}, {{P38646, Protein}}, {{Q9H9B4, Protein}}, {{P55084, Protein}},
{{Q9NUJ1, Protein}}, {{P49411, Protein}}, {{P13804, Protein}}, {{P17568, Protein}},
{{P22033, Protein}}, {{Q16822, Protein}}, {{P83111, Protein}},
{{O95571, Protein}}, {{Q8N4H5, Protein}}, {{O96008, Protein}}, {{P10515, Protein}},
{{Q96I99, Protein}}, {{P42126, Protein}}, {{P51970, Protein}}, {{P22695, Protein}},
{{P40939, Protein}}, {{O75947, Protein}}, {{Q02218, Protein}}, {{P22307, Protein}},
{{P10606, Protein}}, {{FOXO3, RNA}}, {{O75489, Protein}}, {{P28288, Protein}},

GO:0005759 → 1.56806×10-7, 0.00012372, True, {243, 728, 39544, 19},
{{mitochondrial matrix, cellular_component}, {{{MMAA, RNA}}, {{PDP2, RNA}}, {{IBA57, RNA}},

{{Q9NSE4, Protein}}, {{P06576, Protein}}, {{P10809, Protein}}, {{Q99798, Protein}},
{{P38646, Protein}}, {{Q9NUJ1, Protein}}, {{P13804, Protein}}, {{P22033, Protein}},
{{Q16822, Protein}}, {{O95571, Protein}}, {{P10515, Protein}}, {{Q96I99, Protein}},
{{P42126, Protein}}, {{Q02218, Protein}}, {{FOXO3, RNA}}, {{O75489, Protein}}}},

GO:0005814 → {{0.0000689172, 0.0362505, True}, {243, 282, 39544, 9},
{{centriole, cellular_component}, {{{AHI1, RNA}}, {{KIAA1731, RNA}}, {{SASS6, RNA}}, {{SCLT1, RNA}},

{{CEP128, RNA}}, {{CEP152, RNA}}, {{CCDC146, RNA}}, {{CNTLN, RNA}}, {{CEP135, RNA}}}}},

G1S2 → /0, G1S3 → /0, G1S4 → /0, G1S5 → GO:0005515 → 6.39794×10-10, 5.74535×10-7, True,

{76, 19258, 39544, 63}, protein binding, molecular_function,
{{{P60900, Protein}}, {{P13612, Protein}}, {{Q8IUZ5, Protein}}, {{Q9Y285, Protein}},
{{P13861, Protein}}, {{O94979, Protein}}, {{O14933, Protein}}, {{Q9Y6Y8, Protein}},
{{Q7L2H7, Protein}}, {{P01732, Protein}}, {{Q13439, Protein}}, {{Q15819, Protein}},
{{P19784, Protein}}, {{O14745, Protein}}, {{Q07812, Protein}}, {{Q86UP2, Protein}},
{{Q8N1G4, Protein}}, {{Q01082, Protein}}, {{Q9UEU0, Protein}}, {{Q8N8A2, Protein}},
{{Q13043, Protein}}, {{O14732, Protein}}, {{Q7Z4H3, Protein}}, {{O60826, Protein}},
{{Q9UBE0, Protein}}, {{P30520, Protein}}, {{P54136, Protein}}, {{Q13596, Protein}},
{{P25098, Protein}}, {{P41227, Protein}}, {{Q9HC16, Protein}}, {{P61457, Protein}},
{{Q9Y3L3, Protein}}, {{Q92888, Protein}}, {{P62263, Protein}}, {{P85037, Protein}},
{{O00487, Protein}}, {{P54725, Protein}}, {{Q2TAY7, Protein}}, {{P52756, Protein}},

, , , ,
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Out[290]=

{{O00487, Protein}}, {{P54725, Protein}}, {{Q2TAY7, Protein}}, {{P52756, Protein}},
{{O94776, Protein}}, {{Q13148, Protein}}, {{P06127, Protein}}, {{Q02818, Protein}},
{{P19474, Protein}}, {{P07766, Protein}}, {{Q9Y333, Protein}}, {{ZNF624, RNA}}, {{BLM, RNA}},
{{ZNF772, RNA}}, {{P25788, Protein}}, {{P35998, Protein}}, {{Q9Y3D0, Protein}}, {{O43813, Protein}},
{{Q9Y2V2, Protein}}, {{Q13347, Protein}}, {{Q5JSL3, Protein}}, {{BRMS1L, RNA}}, {{O60841, Protein}},
{{O75534, Protein}}, {{O95218, Protein}}, {{O43402, Protein}}, {{Q99623, Protein}}},

GO:0005829 → 2.03819×10-9, 9.15148×10-7, True, {76, 10070, 39544, 44},
{{cytosol, cellular_component}, {{{P60900, Protein}}, {{O43252, Protein}}, {{Q9Y285, Protein}},

{{P13861, Protein}}, {{O94979, Protein}}, {{O14933, Protein}}, {{Q9Y6Y8, Protein}},
{{Q7L2H7, Protein}}, {{Q13439, Protein}}, {{P19784, Protein}}, {{Q07812, Protein}},
{{P56192, Protein}}, {{Q01082, Protein}}, {{Q9UEU0, Protein}}, {{Q13043, Protein}},
{{O14732, Protein}}, {{O60826, Protein}}, {{P30520, Protein}}, {{P55263, Protein}},
{{P54136, Protein}}, {{Q13596, Protein}}, {{P25098, Protein}}, {{P41227, Protein}},
{{Q9HC16, Protein}}, {{P61457, Protein}}, {{Q9Y3L3, Protein}}, {{Q92888, Protein}},
{{P62263, Protein}}, {{P63220, Protein}}, {{O00487, Protein}}, {{P54725, Protein}},
{{P19474, Protein}}, {{Q9Y333, Protein}}, {{BLM, RNA}}, {{PLEKHA8, RNA}}, {{P25788, Protein}},
{{P35998, Protein}}, {{Q9Y3D0, Protein}}, {{Q9Y2V2, Protein}}, {{Q13347, Protein}},
{{Q5JSL3, Protein}}, {{O60841, Protein}}, {{O75534, Protein}}, {{O43402, Protein}}}},

GO:0003723 → 1.85224×10-7, 0.0000554438, True, {76, 2774, 39544, 20},
RNA binding, molecular_function,
{{{P60900, Protein}}, {{Q9BSD7, Protein}}, {{Q9Y285, Protein}}, {{Q9Y6Y8, Protein}},
{{Q86UP2, Protein}}, {{Q8N1G4, Protein}}, {{Q01082, Protein}}, {{P55263, Protein}},
{{Q9HC16, Protein}}, {{Q92888, Protein}}, {{P62263, Protein}}, {{P63220, Protein}},
{{P52756, Protein}}, {{Q13148, Protein}}, {{O43818, Protein}}, {{P19474, Protein}},
{{Q9Y333, Protein}}, {{O60841, Protein}}, {{O75534, Protein}}, {{O95218, Protein}}},

G1S6 → /0, G1S7 → /0, G1S8 → /0, G1S9 → /0,
G1S10 →
/0,

G1S11 →
/0,

G1S12 →
GO:0051301 →

6.93189×10-9, 0.000012311, True, {167, 690, 39544, 17}, {{cell division, biological_process},
{{{CDCA3, RNA}}, {{CDT1, RNA}}, {{CCNB2, RNA}}, {{AURKA, RNA}}, {{BUB1, RNA}}, {{CDK1, RNA}},
{{CDC20, RNA}}, {{HMGA2, RNA}}, {{BIRC5, RNA}}, {{CDCA5, RNA}}, {{FSD1, RNA}}, {{TPX2, RNA}},
{{FAM64A, RNA}}, {{CCNB1, RNA}}, {{USP44, RNA}}, {{UBE2C, RNA}}, {{TIPIN, RNA}}}},

GO:0062023 → 4.73395×10-7, 0.000420375, True, {167, 720, 39544, 15},
{{collagen-containing extracellular matrix, cellular_component},
{{{CXCL12, RNA}}, {{GPC2, RNA}}, {{FBLN1, RNA}}, {{SFRP1, RNA}}, {{GPC3, RNA}},
{{PXDN, RNA}}, {{GPC4, RNA}}, {{COL26A1, RNA}}, {{COL4A2, RNA}}, {{CDH2, RNA}},
{{MFAP2, RNA}}, {{RARRES2, RNA}}, {{SFRP2, RNA}}, {{APOE, RNA}}, {{MDK, RNA}}}},

GO:0005876 → 7.57217×10-7, 0.000448272, True, {167, 74, 39544, 6},
{{spindle microtubule, cellular_component}, {{{PLK1, RNA}}, {{AURKA, RNA}}, {{CDK1, RNA}},

{{AURKB, RNA}}, {{BIRC5, RNA}}, {{NUSAP1, RNA}}}}, G1S13 → /0, G1S14 → /0

Let us extract the names of the top 10 ontology group results from all the "f1" Group1 subgroup 1 data (G1S1). These are in the 3rd list, first component 

for GOAnalysis  outputs (see above and documentation:

In[291]:= Query"f1", "G1S1", All, 3, 1@goAnalysisCombined

Out[291]= GO:0016020 → {membrane, cellular_component}, GO:0005515 → protein binding, molecular_function,
GO:0043312 → {neutrophil degranulation, biological_process},
GO:0070062 → {extracellular exosome, cellular_component},
GO:0010501 → {RNA secondary structure unwinding, biological_process},
GO:0035196 → production of miRNAs involved in gene silencing by miRNA, biological_process,
GO:0006986 → response to unfolded protein, biological_process,
GO:0051787 → misfolded protein binding, molecular_function,
GO:0005783 → {endoplasmic reticulum, cellular_component},
GO:0005925 → focal adhesion, cellular_component,
GO:0035198 → miRNA binding, molecular_function, GO:0005739 → {mitochondrion, cellular_component},
GO:0009986 → cell surface, cellular_component, GO:0005524 → ATP binding, molecular_function
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Let us extract the corresponding p-values/test results of the top 10 ontology group results from all the "SpikeMin" Group1 subgroup 1 data (G1S1). These 

are in the 1st list for GOAnalysis  outputs (see above and documentation:

In[292]:= Query"f1", "G1S1", All, 1@goAnalysisCombined

Out[292]= GO:0016020 → 1.21194×10-8, 0.0000156583, True, GO:0005515 → 2.67501×10-6, 0.00172805, True,

GO:0043312 → 4.3445×10-6, 0.00186057, True, GO:0070062 → 5.76028×10-6, 0.00186057, True,
GO:0010501 → {0.0000127142, 0.00328536, True}, GO:0035196 → {0.0000895042, 0.0192732, True},
GO:0006986 → {0.000207549, 0.0368334, True}, GO:0051787 → {0.000465227, 0.0422394, True},
GO:0005783 → {0.000606134, 0.0422394, True}, GO:0005925 → {0.000623223, 0.0422394, True},
GO:0035198 → {0.000708397, 0.0422394, True}, GO:0005739 → {0.000751939, 0.0422394, True},
GO:0009986 → {0.000808238, 0.0435101, True}, GO:0005524 → {0.000939921, 0.047844, True}

Pathway Analysis

Enrichment of Genomic KEGG Pathways (KEGG: Kyoto Encyclopedia of Genes and Genomes)

MathIOmica provides a KEGGAnalysis  function using annotations (default is for human data) obtained from KEGG: Kyoto Encyclopedia of Genes and

Genomes,  and  by  default  uses  human  data  annotated  with  KEGG  Gene  IDs.  The  KEGGAnalysis  function  performs  an  over-representation  (ORA)

analysis, providing a "significance" cutoff based on a p-value assessed by a hypergeometric function. 

KEGGAnalysis[data] calculates input data over-representation analysis for 
KEGG: Kyoto Encyclopedia of Genes and Genomes 
pathways. We note that the function utilizes data obtained 
from the KEGG databases, and by default uses human 
data annotated by "KEGG Gene ID".

Performing an over representation analysis for KEGG:Kyoto Encyclopedia of Genes and Genomes pathways, using clustered data in MathIOmica.

option name default value

AdditionalFilter None AdditionalFilter provides additional 
filtering that may be applied to the 
standard output structure to be returned. 

AnalysisType "Genomic" AnalysisType provides a selection for the 
type of analysis to perform. "Genomic" 
analysis (default) uses gene identifier 
based analysis. "Molecular" analysis uses 
molecular analysis. Setting the option to 
All carries out all possible analysis types 
for the input data.

AugmentDictionary True AugmentDictionary provides a choice 
whether or not to augment the current 
ConstantGeneDictionary  variable or create 
a new one.
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AugmentDictionary provides a choice 
whether or not to augment the current 
ConstantGeneDictionary  variable or create 
a new one.

BacgroundSet All BackgroundSet provides a list of IDs (e.g. 
gene accessions) that should be 
considered as the background for the 
calculation.

FilterSignificant True FilterSignificant can be set to True to filter 
data based on whether the enrichment 
analysis is statistically significant, or if set 
to False to return all membership 
computations.

GeneDictionary None GeneDictionary points to an existing 
variable to use as a gene dictionary in 
annotations. If set to None the default 
ConstantGeneDictionary  will be used.

GetGeneDictionaryOptions {} The GetGeneDictionaryOptions option 
specifies a list of options that will be 
passed to the internal GetGeneDictionary  
function.

HypothesisFunction (Query["Results"][
Benjamini-
HochbergF-
DR[
#1,
Significa-
nceLevel
->
#2]] &) &

The HypothesisFunction option allows us 
to chose a function to implement multiple 
hypothesis testing.  The default is  using 
the BenjaminiHochbergFDR  function.
The user can use any function f with three 
inputs, of the form f[#1,#2,#3] where the 
inputs refer to:
#1 is the p-value list, 
#2 is a significance cutoff, 
#3 is the number of GO associations 
overall being tested. 
The function f must output a list of 3 
values: {original p-value, adjusted p-
value, True or False based on whether this 
value is considered statistically significant 
or not respectively}.

InputID {"UniProt ID",
"Gene Symbol"}

The InputID option specifies the kind of 
identifiers/accessions used as input.

KEGGAnalysisAssignerOptions {} The KEGGAnalysisAssignerOptions option 
specifies a list of options that will be 
passed to the internal 
KEGGAnalysisAssigner  function.
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The KEGGAnalysisAssignerOptions option 
specifies a list of options that will be 
passed to the internal 
KEGGAnalysisAssigner  function.

KEGGDatabase "pathway" KEGGDatabase value indicates which KEGG 
database to use as the target database.

KEGGDictionaryOptions {} KEGGDictionaryOptions specifies a list of 
options to be passed to the internal 
KEGGDictionary  function that provides the 
KEGG annotations.

KEGGDictionaryVariable None KEGGDictionaryVariable can provide a 
KEGG annotation variable. If set to None, 
KEGGDictionary  will be used internally to 
automatically generate the default KEGG 
annotation.

KEGGMolecular "cpd" KEGGMolecular specifies which database 
to use for molecular analysis. The default is 
the compound database ("cpd").

KEGGOrganism "hsa" KEGGOrganism indicates which organism 
(org) to use for "Genomic" type of analysis. 
The default is human analysis org="hsa".

MathIOmicaDataDirectory ConstantMathIOmica-
DataDirectory

MathIOmicaDataDirectory option specifies 
the directory where the default 
MathIOmica package data are stored. By 
default the option is set to create the 
standard directory if it does not exist 
already. 

MolecularInputID {"cpd"} MolecularInputID is a string list to indicate 
the kind of ID to use for the input molecule 
entries.

MolecularOutputID "cpd" MolecularOutputID is a string to indicate 
the kind of ID to convert input molecule 
entries. The default is "cpd" consistently 
with use of the "cpd" database as the 
default molecular analysis.

MolecularSpecies "compound" MolecularSpecies specifies the kind of 
molecular input.
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MultipleList False MultipleList option specifies whether the 
input accessions list constituted a multi-
omics list input that is annotated so. Each 
ID j  input must be a list form, i.e. enclosed 
as {IDj}.  If this is the case, MultipleList is 
set to True and each input list ID should 
have the form {ID,"Omics Type Label"}, e.g. 
{"NFKB1","Protein"}, and the different 
omics type are treated as different for each 
ID. If MultipleList is set to False, and 
labeled IDs are provided, labels 
corresponding to the same ID are treated 
as equivalent to avoid overcounting.

MultipleListCorrection None MultipleListCorrection is an option 
whether or not to correct for multi-omics 
analysis. The choices are None, Automatic, 
or a custom number. This essentially 
enlarges the population by this factor to 
account for additional IDs being 
considered as the result of a multi-omics 
cluster analysis. If the value is set to 
Automatic the number of unique ID labels 
is used to make the correction.

NonUCSC False NonUCSC option set to False assumes 
UCSC browser was used in determining an 
internal GeneDictionary used in ID 
translations where the KEGG identifiers for 
genes are number strings (e.g. 4790). 
The NonUCSC option can be set to True if 
standard KEGG accessions are used in a 
user provided GeneDictionary variable, in 
the form OptionValue[KEGGOrganism] 
<>":"<>"number string", e.g. "hsa:4790"

OutputID "KEGG Gene ID" OutputID is a string to indicate the kind of 
ID to convert input genomic analysis 
entries. The default is "KEGG Gene ID" 
consistently with use of the "pathway" 
database as the default genomic analysis.
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OutputID is a string to indicate the kind of 
ID to convert input genomic analysis 
entries. The default is "KEGG Gene ID" 
consistently with use of the "pathway" 
database as the default genomic analysis.

PathwayLengthFilter 2 PathwayLengthFilter can be used to set the 
value for which terms to consider in the 
computation, by excluding KEGG pathways 
that have fewer items compared to the 
PathwayLengthFilter value. It is used by 
the internal KEGGAnalysisAssigner  
function.

pValueCutoff 0.05 pValueCutoff provides a cutoff p-value for 
adjusted p-values to assess statistical 
significance.

ReportFilter 1 ReportFilter provides a cutoff for 
membership in pathways in selecting 
which terms/pathways to return. It is used 
in conjunction with ReportFilterFunction.

ReportFilterFunction GreaterEqualThan ReportFilterFunction specifies what 
operator form will be used to compare 
against ReportFilter option value in 
selecting which terms/pathways to return. 
The default is to use GreaterEqualThan 

Species "human" The Species option specifies the species 
considered in the calculation.

TestFunction (1 -N CDF[
Hypergeom-
etricDist-
ribution[
#1, #2,
#3], #4 -
1]] )&

The TestFunction option calculates the p-
values for the enrichment of each term. It 
can be a function of four inputs, 
f[#1,#2,#3,#4] (e.g. the default is using a 
hypergeometric distribution CDF, 1-
N[CDF[HypergeometricDistribution[#1,#2,
#3],#4-1]]]. The four inputs refer to:
#1 is number of draws (members in group 
being tested),
#2 is number of successes for category in 
population,
#3 is total number of members in 
population,
#4 is number of successes (or more) in 
current group being tested for specific 
category.
The output is a p-value (real positive 
number ≤ 1).

Options for KEGGAnalysis .
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Options for KEGGAnalysis .

The input data can be a single list of n genes in the form:

data = {ID1, ID2, ..., IDn}

The IDs may be provided as ID strings, IDj  (e.g. "NFKB1") as strings enclosed in list brackets {IDj}, (e.g. {"NFKB1"}  or as labeled strings in the case

of multiple omics being considered. Labeled IDs are typically provided as:

{{ID1, ... optional label items1, label1},
{ID2, ... optional label items2, ..., label2}, ... {IDn, ..., optional label itemsn, ..., labeln}}.

The  ID  labels  are  typically  a  string,  e.g.  typically  "RNA"  or  "Protein",  (e.g.  {"NFKB1","Protein"})  or  for  a  molecular  ID  obtained  from  metabolomics

experiments,  can  also  contain  other  optional  label  items  such  as  mass  and  retention  time  {"cpd:C00449", 276.133, 11.0041, "Meta"}.

The main label must always be the last element in the list.

The output has the following structures: for a single list input:

listOutput = <|KEGG : pathway1 →
{{p - value1, multiple hypothesis adjusted p - value1, True/False for statistical significance},
{{number of members in group being tested, number of successes for term1 in population,

total number of members in population, number of members (or more) in current group being tested
associated to pathway1}, {KEGG pathway1 description, {input IDs associated to pathway1}}}},

KEGG : pathway2 → {{p - value2, multiple hypothesis adjusted p - value2,
True/False for statistical significance}, {{number of members in group being tested,
number of successes for term2 in population, total number of members in population,
number of members (or more) in current group being tested associated to pathway2},

{KEGG pathway1 description, {input IDs associated to pathway2}}}}, ..., KEGG : pathwayn →
{{p - valuen, multiple hypothesis adjusted p - valuen, True/False for statistical significance},
{{number of members in group being tested, number of successes for termn in population,

total number of members in population, number of members (or more) in current group being tested
associated to pathwayn}, {KEGG pathwayn description, {input IDs associated to pathwayn}}}}

|>

The input data can also be an association of multiple L groups to be tested:

data = <|Group1 → ID11, ID12, ..., ID1 n1,
Group2 → {ID21, ID22, ..., ID2 n2}, ...,
GroupL → ID11, ID12, ..., ID1 nL|>.

In this case the output for each group has the listOutput format described above:

associationOutput = <|Group1 → listOutput1,
Group2 → listOutput2, ...,
GroupL → listOutputL|>

KEGGAnalysis  can  also  take  as  input  the  output  of  clustering  of  time  series  classification  data,  e.g.  TimeSeriesClusters  or

TimeSeriesSingleClusters  association of associations. The groups for each class will then have keys labeled "GroupAssociations", that include

the labels used in the clustering. The labels must correspond to protein or gene accessions/IDs. For each class and group the corresponding KEGGAnal-

ysis enrichment is computed and returned. 

There are two types of analyses that are carried out, which can be set by the AnalysisType option value. The default "Genomic" analysis is based on

input  gene symbols.  The "Molecular"  analysis  is  based on molecular  input  accessions  (e.g.  compounds "cpd" databases).  For  multi-omic  input  the

user  may  select  to  do  All  analyses.  In  this  case  an  additional  outer  association  is  created  with  labels  indicating  each  of  "Genomic"  or  "Molecular"

analysis carried out.

The enrichment analysis is an over-representation calculation, using a hypergeometric test. For a given a given group (e.g. members of a cluster after

classification),  we try to identify which KEGG pathway terms are over-represented by membership of IDs to that cluster.  The KEGGAnalysis function

allows us to select the background, and hence address selection bias. Additionally a Benjamini-Hochberg procedure false discovery rate (FDR) may be

calculated for each representation.
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The enrichment analysis is an over-representation calculation, using a hypergeometric test. For a given a given group (e.g. members of a cluster after

classification),  we try to identify which KEGG pathway terms are over-represented by membership of IDs to that cluster.  The KEGGAnalysis function

allows us to select the background, and hence address selection bias. Additionally a Benjamini-Hochberg procedure false discovery rate (FDR) may be

calculated for each representation.

We carry out our KEGGAnalysis for all the classes and groups/subgroups. We only report terms for which there are at least 2 members, and additionally 
correct for multiple omics (2 sets of KEGG terms, one each for proteomics and transcriptomics).  Please note that this is a time consuming computation.

In[293]:= keggAnalysisCombined = KEGGAnalysiscombinedClusters,
ReportFilter → 2, MultipleList → True, MultipleListCorrection → 2 , AnalysisType → All;

We see that both "Molecular" and "Genomic" analysis is performed:

In[294]:= Keys@keggAnalysisCombined

Out[294]= {Molecular, Genomic}

We can extract both Genomic and molecular analysis:

In[295]:= keggAnalysisCombined"Genomic"

Out[295]=

SpikeMax → G1S1 → path:hsa05016 → 5.34103×10-7, 0.0000916715, True, {66, 386, 15746, 11},
Huntington disease - Homo sapiens (human), {{DNAL1, RNA}}, ⋯ 9⋯ , {{O75489, Protein}},

⋯ 9⋯ , path:hsa00640 → ⋯ 1⋯ , ⋯ 12⋯ , ⋯ 1⋯ , ⋯ 8⋯ 

large output show less show more show all set size limit...

In[297]:= keggAnalysisCombined["Molecular"]

Out[297]= SpikeMax → /G1S1 → /0, G1S2 → /0, G1S3 → /0, G1S4 → /0, G1S5 → /0, G1S6 → /0, G1S7 → /0,
G1S8 → /0, G1S9 → /0, G1S10 → /0, G1S11 → /0, G1S12 → /0, G1S13 → /0, G1S14 → /00,

SpikeMin → /G1S1 → /0, G1S2 → /0, G1S3 → /0, G2S1 → /0,
G2S2 → /path:map01100 → {{0.0248138, 0.0413563, True}, {5, 1654, 5841, 4},

{Metabolic pathways, {{{cpd:C06124, 379.249, 12.6871, Meta}}, {{cpd:C20199, 238.12, 9.70221, Meta}},
{{cpd:C19614, 270.22, 12.7198, Meta}}, {{cpd:C05446, 436.355, 14.3015, Meta}}}}}0,

G3S1 → /path:map04976 → {{0.000826861, 0.00496117, True}, {3, 98, 5841, 2},
{Bile secretion, {{{cpd:C04555, 368.165, 12.0826, Meta}, {cpd:C04555, 368.166, 12.3718, Meta}},

{{cpd:C01921, 465.309, 11.8056, Meta}}}}}00, f1 → /G1S1 → /0, G1S2 → /00,
f2 → /G1S1 → /0, G1S2 → /0, G2S1 → /0, G2S2 → /0, G3S1 → /0, G3S2 → /0, G4S1 → /0,

G4S2 → /0, G5S1 → /0, G5S2 → /00,
f3 → /G1S1 → /0, G1S2 → /0, G2S1 → /0, G2S2 → /0, G3S1 → /0,

G3S2 → /0, G4S1 → /0, G4S2 → /00,
f4 → /G1S1 → /0, G1S2 → /0, G2S1 → /00,
f5 → /G1S1 → /0, G1S2 → /00,
f6 → /G1S1 → /0, G1S2 → /0, G2S1 → /00,
f7 → /G1S1 → /00

Let us extract the names of the pathways found for the "SpikeMin" data:

In[298]:= Query"SpikeMin", All, All, 3, 1@keggAnalysisCombined"Genomic"

The results from a MathIOmica time series clustering enrichment analysis can be exported to spreadsheets using EnrichmentReportExport .
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EnrichmentReportExport[results] exports results from enrichment analyses to Excel 
spreadsheets, particularly suited for exporting multi-
omics TimeSeriesClusters  enrichment analysis results (via 

KEGGAnalysis  or GOAnalysis ). An excel spreadsheet is 
generated for each Class, named after the Class key, with 
sheets created for and named after each Group in that 
Class containing the enrichment output for that Group.

Exporting the enrichment analysis results to spreadsheets.

option name default value

AppendString "" String that will be appended to the file 
name after the class name. If a string is not 
provided the current Date is appended.

OutputDirectory None OutputDirectory specifies the location 
of a directory to output the Excel 
spreadsheets generated by the function. If 
it is set to None the 
NotebookDirectory[] will be used as 
a default output directory.

Options for EnrichmentReportExport .

We can export the reports, for example to the $UserDocumentDirectory :

In[205]:= EnrichmentReportExportkeggAnalysisCombined"Genomic",
OutputDirectory → $UserDocumentsDirectory, AppendString → "KEGGAnalysisCombined";

We can export the GO analysis results as well, for example to the $UserDocumentDirectory :

In[206]:= EnrichmentReportExportgoAnalysisCombined,
OutputDirectory → $UserDocumentsDirectory, AppendString → "GOAnalysisCombined";

Visualization of Pathways from KEGG

MathIOmica allows visualization and coloring of KEGG pathways using KEGGPathwayVisual . 

KEGGPathwayVisual[pathway] generates a visual representation for a KEGG: Kyoto 
Encyclopedia of Genes and Genomes pathway.

Visualizing KEGG pathways.

option name default value
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AnalysisType "Genomic" AnalysisType provides a selection for the 
type of analysis to perform. "Genomic" 
analysis (default) uses gene identifier 
based pathway visualization. "Molecular" 
analysis uses molecular analysis map 
visualization.

AugmentDictionary True AugmentDictionary provides a choice 
whether or not to augment the current 
ConstantGeneDictionary  variable or create 
a new one.

BlendColors {RGBColor[
0, 0, 1],

RGBColor[0,
0, 1],

RGBColor[0.5,
0.5, 0.5],

RGBColor[1, 0,
0], RGBColor[
1, 0, 0]}

BlendColors provides a list of colors to be 
used in coloring intensities provided and is 
used by the IntensityFunction as its first 
argument. The colors must be provided as 
RGBColor[] specification.

ColorSelection <|"RNA" → "bg",
"Protein" →

"fg"|>

ColorSelection assigns foreground and 
background colors in the KEGG pathway 
through an association. The Keys point to 
labels for multi-omics data, and the values 
"bg" and "fg" can point to background and 
foreground representations respectively 
for each key.

DefaultColors {"fg" -> RGBColor[
0, 0, 0],

"bg" ->
RGBColor[

0, 1, 0]}

DefaultColors provides a list of rules for 
setting the colors to be used as default 
values for the foreground "fg" and 
background "bg" respectively in the 
generated pathways. The colors must be 
provided as RGBColor[] specification.

ExportMovieOptions {"VideoEncoding"→
"MPEG-4

Video",
"FrameRate"→1}

ExportMovieOptions provides options for 
the Export function used internally to 
export the pathway list when Intensities 
have been provided for a time series 
representation of data.

FileExtend ".mov" FileExtend provides a string to be 
appended to the file name if the 
ResultsFormat is set to "Movie".
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FileExtend provides a string to be 
appended to the file name if the 
ResultsFormat is set to "Movie".

GeneDictionary None GeneDictionary points to an existing 
variable to use as a gene dictionary in 
annotations. The gene dictionary is used to 
convert MemberSet identities provided to 
corresponding KEGG identifiers. If  
GeneDictionary is set to None the default 
ConstantGeneDictionary  will be created or 
augmented through the use of 
GetGeneDictionary .

GetGeneDicitonaryOptions {} The GetGeneDictionaryOptions option 
specifies a list of options that will be 
passed to the internal GetGeneDictionary  
function.

InputID {"UniProt ID",
"Gene Symbol"}

The InputID option specifies the kind of 
identifiers/accessions used as input when 
identifiers are provided through setting the 
MemberSet values.

Intensities None Intensities may be used to provide a set of 
intensities that will be used for coloring 
components of the pathway. The 
intensities are provided as an association 
for each ID as single values, or as a list of 
values in the case of series data:
<|ID1 →

{intensity list for ID1},
ID2 → {intensity list

for ID2}, ...,
IDN → {intensity list

for IDN}|>.
Intensities must be scaled from -1 to 1, or 
selected such that the IntensityFunction 
can convert them to a number between 0 
to 1.
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IntensityFunction (Blend[#1,
(#2+1)/2]&)

IntensityFunction is a function of two 
arguments that allows customization of 
the coloring for the intensities. The 
IntensityFunction value can be any 
function which outputs a color, I(#1,#2), 
(*where#1 is the BlendColors option value, 
and #2 is an intensity vector, that has 
values typically ranging from [-1,1].

KEGGAnalysisAssignerOptions {} The KEGGAnalysisAssignerOptions option 
specifies a list of options that will be 
passed to the internal 
KEGGAnalysisAssigner  function.

KEGGDatabase "pathway" KEGGDatabase value indicates which KEGG 
database to use as the target database.

KEGGMolecular "cpd" KEGGMolecular specifies which database 
to use for molecular analysis. The default is 
the compound database ("cpd").

KEGGOrganism "hsa" KEGGOrganism indicates which organism 
(org) to use for "Genomic" type of analysis. 
The default is human analysis org="hsa".

MathIOmicaDataDirectory ConstantMathIOmica-
DataDirectory

MathIOmicaDataDirectory option specifies 
the directory where the default 
MathIOmica package data are stored. By 
default the option is set to create the 
standard directory if it does not exist 
already. 
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MathIOmicaDataDirectory option specifies 
the directory where the default 
MathIOmica package data are stored. By 
default the option is set to create the 
standard directory if it does not exist 
already. 

MemberSet All MemberSet selects which members of the 
pathway are to be considered. The choices 
are:
All: return the pathway only.
{list of identifiers}: a list of identifiers that 
will be highlighted. If ORA is set to True the 
list must be the output from an over 
representation analysis, and the identifiers 
will be selected from the last list, second 
sublist.
Only IDs that are found to match in the 
pathway are colored.
An internal gene dictionary (see 
GetGeneDictionary ) is used to convert IDs 
to KEGG IDs.

MissingValueColor RGBColor[0.4,
0.4, 0.4]

MissingValueColor provides a color to be 
used when Intensities are provided to 
represent values that are tagged as 
Missing[]. The color must be provided as 
RGBColor[] specification.

MolecularInputID {"cpd"} MolecularInputID is a string list to indicate 
the kind of ID to use for the input molecule 
entries.

MolecularOutputID "cpd" MolecularOutputID is a string to indicate 
the kind of ID to convert input molecule 
entries. The default is "cpd" consistently 
with use of the "cpd" database as the 
default molecular analysis.

MolecularSpecies "compound" MolecularSpecies specifies the kind of 
molecular input.

MovieFilePath None MovieFilePath indicates the path 
(including file name) where if 
ResultsFormat is set to "Movie"  the movie 
generated will be saved. The default value 
None will generate a file named after the 
pathway with extension set by the 
FileExtend option in the current directory.
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NonUCSC False NonUCSC option set to False assumes 
UCSC browser was used in determining an 
internal GeneDictionary used in ID 
translations where the KEGG identifiers for 
genes are number strings (e.g. 4790). 
The NonUCSC option can be set to True if 
standard KEGG accessions are used in a 
user provided GeneDictionary variable, in 
the form OptionValue[KEGGOrganism] 
<>":"<>"number string", e.g. "hsa:4790"

ORA False ORA can be set to True or False depending 
on whether the input is from an over 
representation analysis (e.g. output from 
KEGGAnalysis ), or not respectively.

OutputID "KEGG Gene ID" OutputID is a string to indicate the kind of 
ID to convert input genomic analysis 
entries. The default is "KEGG Gene ID" 
consistently with use of the "pathway" 
database as the default genomic analysis.

ResultsFormat "URL" ResultsFormat provides a choice of 
output format, the choices are:
"URL": returns a URL of the pathway,
"Figure": returns figure output(s) for the 
pathway,
"Movie": in the case of series data returns 
a movie/animation of the series pathway 
snapshots.

SingleColorPlace "bg" SingleColorPlace selects in the case of a 
single identifier input whether to place the 
color to the foreground, ("fg") or 
background ("bg" set by default).

Species "human" The Species option specifies the species 
considered in the calculation.
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StandardHighlight {"fg" -> RGBColor[
1, 0, 0],

"bg" ->
RGBColor[0.5,

0.7, 1]}

StandardHighlight provides a list of rules 
for setting the highlight colors for the IDs 
represented in the pathway (when no 
intensities are provided). The list specifies 
color rules for foregroung, "fg", and 
background, "bg", respectively. The colors 
must be provided as RGBColor[] 
specification.

Options for KEGGPathwayVisual .

ResultsFormat option setting "Results" value for returned data

"URL" Browser URL pointing to pathway on KEGG database, or if 
a list of Intensities was provided a series of URLs 
corresponding to each time point or sequential data in the 
series.

"Figure" Pathway figure downloaded from the KEGG database, or if 
a list of Intensities was provided a series of figures 
corresponding to each time point or sequential data in the 
series.

"Movie" Name of the output file that contains the generated 
movie/animation that is based on the list of Intensities 
provided.

ResultsFormat option output for KEGGPathwayVisual

For example, we can look at the B-cell receptor pathway:

In[299]:= exampleBCellReceptor = KEGGPathwayVisual["path:hsa04662"]

Out[299]= /Pathway → path:hsa04662, Results → {https://www.kegg.jp/kegg-bin/show_pathway?map=hsa04662}0

We can open this in a browser:

In[208]:= SystemOpen[exampleBCellReceptor["Results"][[1]]]

We can import directly the pathway:

In[300]:= exampleBCellReceptorFigure = KEGGPathwayVisual"path:hsa04662", ResultsFormat → "Figure"

Out[300]=
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We can zoom in:

In[301]:= ShowexampleBCellReceptorFigure["Results"][[1]], ImageSize → 500

Out[301]=

We can highlight the components:

In[302]:= exampleBCellReceptorFigureHighlight = KEGGPathwayVisual"path:hsa04662", ResultsFormat → "Figure",
MemberSet → Query"SpikeMin", "G2S2", "path:hsa04662"@keggAnalysisCombined"Genomic", ORA → True

Out[302]=

We can zoom in:

In[303]:= ShowexampleBCellReceptorFigureHighlight["Results"][[1]], ImageSize → 500

Out[303]=
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We can also create snapshots and an animation of this data.

First, let's extract the members of the pathway in the analysis:

In[306]:= membersBCellReceptor =
Query"SpikeMin", "G2S2", "path:hsa04662", 3, 2@keggAnalysisCombined"Genomic"[[All, 1]]

Out[306]= {{PTPN6, RNA}, {IKBKB, RNA}, {INPPL1, RNA}, {NFATC3, RNA}, {Q08209, Protein}, {JUN, RNA},
{PPP3R1, RNA}, {CARD11, RNA}, {VAV1, RNA}, {MAPK3, RNA}, {AKT2, RNA}, {INPP5D, RNA},
{RELA, RNA}, {IFITM1, RNA}, {P29350, Protein}, {NFATC1, RNA}, {KRAS, RNA}, {PRKCB, RNA},
{CHUK, RNA}, {SOS2, RNA}, {NRAS, RNA}, {RAC2, RNA}, {PIK3R1, RNA}, {PPP3CB, RNA}, {MAP2K1, RNA},
{PIK3CB, RNA}, {PIK3CD, RNA}, {SOS1, RNA}, {PIK3CA, RNA}, {MALT1, RNA}, {CR2, RNA}, {BTK, RNA}}

First, let's extract the members of the pathway in the analysis:

In[307]:= intensitiesRNABCellReceptor = DeleteMissingQuery[Key[#] & /@ membersBCellReceptor]@rnaFinalTimeSeries;
intensitiesproteinBCellReceptor =

DeleteMissingQuery[Key[#] & /@ membersBCellReceptor]@proteinFinalTimeSeries;
intensitiesAll = JoinintensitiesRNABCellReceptor, intensitiesproteinBCellReceptor

We can now extract and plot the sequence of figures:

In[310]:= exampleBCellReceptorFigureTimeSet = KEGGPathwayVisual"path:hsa04662",
ResultsFormat → "Figure", MemberSet → membersBCellReceptor, Intensities → intensitiesAll

Out[310]=
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Out[310]=

We can use ListAnimate to generate a movie/animation of the results
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We can use ListAnimate to generate a movie/animation of the results

In[311]:= ListAnimateexampleBCellReceptorFigureTimeSet["Results"], ImageSize → Automatic

Out[311]=

We can set the ResultsFormat to "Movie" to output a movie version:

In[232]:= KEGGPathwayVisual"path:hsa04662", ResultsFormat → "Movie",
MemberSet → membersBCellReceptor, Intensities → intensitiesAll

Related Tutorials

▪ MathIOmica Dynamic Transcriptome

▪ MathIOmica Overview

▪ MathIOmica Guide
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